

QOS on the XScale Ipaq Over 802.11b
CSC 714 Term Project

Anita Nagarajan
Guru Ranganathan
Vasanth Asokan

 2

Table of Contents

 Page

 1. Abstract…………………………………………………………………………3
 2. Introduction……………………………………………………………………..3
 3. Experimental Setup……………………………………………………………..3
 3.1 Multimedia Client…………………………………………………………..3
 3.1.1 MPEG Player…………………………………………………...3
 3.1.2 RTP/RTSP…………………………………………….………...4
 3.1.3 Network Load……………………………………………….…..4
 3.2 Multimedia Server………………………………………………………......5
 3.3 Wireless Infrastructure…………………………………………….……......5
 3.4 Experimental Setup Diagram……………………………………...……......5
 4. Experiments………………………………………………………………….....6
 5. Results………………………………………………………………………......6

5.1 Varying background load, Equal prio’s for RTP and Load threads. ……....6
5.2 Constant Load, Varying Priorities for RTP and Load threads………….......7

6. Limitations…………………………………………………………….……......7
7. Open/Unresolved Issues……………………………………………….……......8
8. Work Split…………………………………………………………….…….......8
9. Conclusion……………………………………………………………..……......9

Acknowledgements…………………………………………………………….……....10
References…………………………………………………………….………………..10
Appendix…………………………………………………………….………………....11

 3

1. Abstract

Handheld devices are an example of devices with constrained hardware and software
resources, which are nevertheless expected to perform soft real-time multimedia tasks.
The 802.11b is the IEEE standard for wireless communication within short distances. A
combination of the two is interesting in terms of performance and quality issues. This
project aims to evaluate certain QOS parameters for an XScale Ipaq running over an
802.11b wireless network.

2. Introduction

The Ipaq features an Intel Xscale processor running at 400 MHz with a 48 MB Flash
ROM and 64 MB of SDRAM. They run the Windows Pocket PC 2002 Operating System
(based on Win CE). Win CE is the embedded version of the popular desktop version.
Streaming multimedia applications are an example of a soft real-time system.The basic
idea of the project is to setup an experimental environment to test QoS parameters on the
Ipaq. This is achieved by developing custom multimedia and background applications.

3. Experimental Setup

3.1 Multimedia Client:

A streaming video client is a good test bed for QOS measurements. This is due to two
facts.

1) Video frames are typically larger samples when compared to pure audio samples.
2) Decoding and rendering video frames is a computationally complex task with

real-time requirements.

3.1.1 MPEG Player

MPEG-1 is a popular video format which uses advanced compression techniques.
MpegTV SDK is a freeware SDK which can be used by developers to quickly build
video playing clients [MTV]. The daunting task of writing the decoding and rendering
thread is abstracted away by the library. The SDK is also especially interesting due to the
fact that it allows one to write a separate layer (as a DLL) which can take care of
providing an input video stream to the player. With respect to this project, the network
streaming layer was built within this DLL. The SDK also provides a hook for retrieving
the frame rate being played. Thus, there is a player thread within the multimedia client
which performs the decoding and rendering tasks.

 4

3.1.2 RTP/RTSP

RTSP, the Real-Time Streaming Protocol [RTSPRFC], is an application-level protocol
for control over the delivery of data with real-time properties. It establishes and controls
either a single or several time-synchronized streams of continuous media such as audio
and video. A server maintains a session labeled by an identifier. An RTSP client may
open and close reliable transport connections to the server or use a connectionless
protocol like UDP. RTP, the Real-Time Transport Protocol [RTPRFC] is the Internet
standard protocol for the transport of real-time data such as video and audio. It provides
end-to-end network transport functions suitable for applications transmitting real-time
data. It can be implemented on top of standard UDP services over unicast/multicast
networks. It provides payload type identification, sequence numbering, time-stamping
and delivery monitoring services.

The client uses a mini-implementation of RTP/RTSP as the streaming protocol to talk to
the streaming server. It first initiates an RTSP session to setup delivery of a particular
media file. The server then uses RTP to transmit the media file

The RTP header has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | sequence number |
 +-+
 | timestamp |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |
 +-+

The timestamp and sequence number fields are the main fields of interest as they aid in
QOS parameter calculations. This is described further below. The RTP layer is
implemented as a separate RTP thread in the multimedia client.

3.1.3 Calculation of QOS Parameters:
 The following QOS parameters are computed from the RTP header of each packet
received:
1. Packets lost
2. Packets lost per interval of time
3. Packets received
4. Packets received per interval of time
5. Delay
6. Jitter
7. Total bytes received

 5

The methods used for calculating these parameters are as specified in the RFC for RTP.

3.1.4 Network Load

Artificial network load is simulated by another load thread within the multimedia
application. It can be programmed to offer varying load across the network.

3.2 Multimedia Server

An evaluation version of the Real Networks Helix Streaming Server was used for a
server. Helix supports RTP/RTSP streaming of MPEG files. The Server also provides
logging and monitoring of served out media streams, which were useful for QOS
measurements.

3.3 Wireless Infrastructure:

NC State University's 802.11b Nomad wireless computing environment was used as the
wireless infrastructure for the experiment.

3.4 Experimental Setup Diagram

Other
Services

N/W
Services

Kernel

Client

Media
Server

Player Load Statistics RTP

Network

 6

4 Experiments

The objective of the experiments can be stated as

1. Observing the effect of varying load on QOS.
2. Observing the effect of varying priorities of the threads on the QOS.

Objective(1) can be achieved by running the custom background thread along with the
media player thread at the same priority and varying the background traffic parameters
and observing its effect on the QOS parameters, which are measured in accordance with
the methods stated in the RFC. Objective (2) can be achieved by creating the background
and the media player thread with different priorities.

The following series of experiments were performed to evaluate QOS metrics.

1. Equal Priorities
a. No Background load
b. Background load of 400kbps
c. Background load of 700kbps

2. Different Priorities(at 400kbps constant load)
a. Equal priorities
b. RTP thread having higher priority
c. Background thread having higher priority.

5 Results

5.1 Varying background load, Equal priorities for RTP and Load threads
 [Appendix A.1]

The graphs obtained as a result of varying the offered load (noload, 400kbps, 700kbps)
are given in appendix A1.

Cumulative Packets Lost: With no background load, the cumulative number of packets
lost is very low. As background load is increased, the number of packets lost increases.
[Appendix A.1.b] This is due to the fact that both the RTP and load thread run at the
same priority level , but the background load pumps in more data into the network, thus
hogging the network and the Ipaq’s network buffers, which leads to more packet loss
experienced by the RTP thread. This behavior is seen in the graph (AppendixA1.a).

Similar conclusions can be arrived at by observing other graphs like

Cumulative Packets Received: [Appendix A1.d].
As can be observed in the graph , the noload line is above the other two lines at all
instants of time indicating that more the amount of data is received (with less loss) for the
entire course of time. Similar behavior is observed for the 400kbps line as compared to

 7

the 700kbps line. This further strengthens our reasoning as stated for the Cumulative
Packets lost graph.

Jitter: [Appendix A1.f]
From the graph, careful observation shows that the jitter is generally high when the
offered load is more and decreases as the offered load is decreased, with minimum
reaching

5.2 Constant Load, Varying Priorities for RTP and Load threads

The priorities of the RTP and load threads were varied and the effects on the QoS
parameters of the player thread were observed. The offered load was not varied. The
graphs are given in the appendix [Appendix A2.]

Cumulative Packets Lost: [Appendix A2.b]
A clear distinction between the various cumulative packets lost statistics can be seen
when they are run with various priorities. As expected the player thread experiences more
packet loss when the background load thread has more priority compared to the RTP
thread, and comparatively lower packet loss when run with equal priority, which further
decreases when run with higher priority. This seems inline with the expectation that a
thread must run better if it is run with higher priority.

Cumulative Packets Received: [Appendix A2.d]
When the RTP thread is run with higher priority packets are received more often and thus
the graph is raised as compared to the other two scenarios. The data values do represent a
higher receive rate for the other two scenarios but due to the granularity of the graph it is
not clearly visible.

Packets Received per Interval: [Appendix A2.e]

This follows the trend of the cumulative packets received graph.

Jitter: [Appendix A2.f]
Under close observation of the jitter graph, it is seen that the jitter experienced by the
RTP thread decreases as the priority of the background load thread increases.

The results seem to be inline with the underlying concepts (within the usual experimental
error margins).

6. Limitations

The approach taken here has many common faults.

� The experimental results presented here are not statistical averages of multiple
runs as they should be ideally.

 8

� The behavior of the wireless network due to varying loads due to other users and
the various wireless specific network issues have not been considered.

� There were some issues with thread priorities and Win CE handling of them that
have also been abstracted away.

� Virtual memory and other such aspects have also been ignored away in the
evaluation.

7. Open/Unresolved Issues

7.1 QOS Measurement of MPEG Streams Using RTP

The timestamp field in the RTP header nominally represents the sampling instant of the
corresponding packet and is normally monotonically increasing [RTPRFC]. Jitter and
Delay calculations interpret this field in the header as the sampling and/or transmission
time at the receiver. It is also the fact that the RTP timestamp may not be monotonically
increasing in the case of interpolated MPEG B video frames [RTPRFC]. B frames are
predictive frames which represent an interpolation of the last frame and a frame to come.
These frames appear out of order by default in the RTP MPEG video stream. i.e., B-
frames have an RTP timestamp greater than some packets that in reality actually follow
them in the network [MPGFORMAT]. Therefore it is inconclusive how jitter and video
calculations incorporate this quirk. It is quite clear though, that jitter and delay
calculations are quite correct for other streams which do not have this property.

7.2 Merging Audio and Video Streams at the Client

RTP streaming of MPEG files works by splitting the audio and video streams and
transmitting them as separate RTP streams. Usually decoders are designed so that there
are separate video and audio decoding/rendering threads with some form of
synchronization between them. This feature is abstracted away in MpegTV SDK. As a
result, only a single composite MPEG-1 stream can be fed to the player. A way in which
the original MPEG stream could be recomposed from two separate media streams was
not found. Though a tractable problem, it is not a very sensible way of doing things. It is
just a constraint imposed by using a common SDK.

8. Work Split

Get familiar with the device and the development environment - All of us
Write/test small initial applications on eVC++ - Guru
Look for open source audio/video decoding engines for WinCE - Vasanth
Research RTP, RTCP, RTSP - Anita
Investigate MpegTV SDK - Anita & Guru
Develop the media decoding/rendering application,
 - The SIH(Stream Input Handler) plug-in(DLL) - Vasanth
 - The Player - Anita
 - Logging information - Vasanth

 9

Implement RTP layer(client) - Anita
Implement RTSP - Vasanth
Evaluation of QOS metrics - Guru
Develop application to simulate load
 - client and server -Vasanth
Develop timeserver application - Anita
Web Maintenance - All of us
Analysis and Final Report - All of us

8. Conclusion

These experiments give an insight into the variation of the QOS parameters with
variation in other factors like background load and thread priorities. This work is not
complete in all aspects and there is scope for more detailed and in-depth study.

 10

Acknowledgements

The following people and resources were of great help.

People,
David Jebousek, Real Networks.
Ross Finlayson, Live.com

Resources
RTP Tools http://www.cs.columbia.edu/IRT/software/rtptools/
MpegTV Forum http://forum.pocketmovies.net/
Live.Com http://www.live.com

References

[RTPRFC] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, “RTP: A Transport Protocol

for Real-Time Applications”, RFC 1889, January 1996.

[RTSPRFC] H. Schulzrinne, A. Rao, R. Lanphier, “Real Time Streaming Protocol (RTSP)”, RFC
 2326, April 1998.

[MPGFORMAT] D. Hoffman, G. Fernando, V. Goyal, M. Civanlar “RTP Payload Format for
 MPEG1/MPEG2 Video” January 1998

[MTV] http://mpegtv.com/sdk

http://www.cs.columbia.edu/IRT/software/rtptools/
http://forum.pocketmovies.net/
http://www.live.com/

 11

Appendix A: Results

These are the results that was obtained as the part of running the experiment for various
values of the offered load, priorities of the processes running.

A.1. Varying the offered Background Load with Equal priorities

a.) Legend:

1. <Statistics>_EQ400kbps represents the statistics graph when the offered load is
400 Kbps. (BLUE COLOR GRAPH)

2. <Statistics>_700kbps represents the statistics graph when the offered load is 700
kbps (PINK COLOR GRAPH)

3. <statistics>_noload represents the statistics graph when no load is offered .
(YELLOW COLOR GRAPH)

b) Cumulative Packets Lost

CUMULATIVE PACKETS LOST

-10

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000 30000 35000

TIME

LO
S

T
P

A
C

K
E

T
S

 Lost_EQ400kbps
 Lost_700kbps
 Lost_noload

PINK: 700Kbps, BLUE: 400Kbps Yellow: NO Load

 12

c) Packets Lost Per Interval

PACKETS LOST PER INTERVAL

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5000 10000 15000 20000 25000 30000 35000

TIME(ms)

LO
S

T
P

A
C

K
E

TS

 Lost/Interv_EQ400kbps
 Lost/Interv_700kbps
 Lost/Interv_noload

PINK: 700Kbps, BLUE: 400Kbps Yellow: No Load

 13

d) Cumulative Packets Received

CUMULATIVE RECEIVED PACKETS

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000 35000

TIME(ms)

N
o.

 O
F

P
ac

ke
ts

 Received_EQ400kbps
 Received_700kbps
 Received_noload

e) Packets Received Per Interval

PINK: 700Kbps, BLUE: 400Kbps Yellow: NO Load

PACKETS RECEIVED PER INTERVAL

-5

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000

TIME(ms)

P
A

C
K

E
TS

 RCVD/Interv_EQ400kbps
 RCVD/Interv_700kbps
 RCVD/Interv_noload

 14

f) Jitter :

JITTER

0

200

400

600

800

1000

1200

1400

1600

1800

TIME(ms)

JI
TT

E
R

(m
s)

 Jitter_EQ400kbps
 Jitter_700kbps
 Jitter_noload

PINK: 700Kbps, BLUE: 400Kbps Yellow: NO Load

g) Delay

DELAY

-50

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000

TIME(ms)

D
E

LA
Y

(m
s)

 Delay_EQ400kbps
 Delay_700kbps
 Delay_noload

 15

A.2. Results for varying the Priorities of the processes with constant
Load (400 kbps)

a) Legend
1. <Statistics>_EQ400kbps represents the statistics graph when the offered load

is 400 Kbps.
2. <Statistics>_HP represents the statistics graph when the RTP process runs

with higher priority as compared to the background load.
3. <Statistics>_LP represents the statistics graph when the RTP process(thread)

runs with lesser priority as compared the background load.

b) Cumulative Packets Lost

PACKETS LOST

-5

0

5

10

15

20

25

30

35

40

45

0 5000 10000 15000 20000 25000 30000 35000

TIME

N
o.

O
F

P
A

C
K

E
TS

 L
O

S
T

 Lost_LP
 Lost_HP
 Lost_EQ400kbps

 16

c) Packets Lost Per Interval

LOST PER INTERVAL

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000 20000 25000 30000 35000

TIME

P
A

C
K

E
TS

 L
O

S
T

 Lost/Interv_LP
 Lost/Interv_HP
 Lost/Interv_EQ400kbps

d) Cumulative Packets Received

CUMULATIVE PACKETS RECEVIED

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000 35000

TIME

P
A

C
K

E
TS

 Received_LP
 Received_EQ400kbps
 Received_HP

 17

e) Packets Received Per Interval

PACKETS RECVD PER INTERVAL

-5

0

5

10

15

20

25

30

35

40

0 5000 10000 15000 20000 25000 30000 35000

TIME

P
A

C
K

E
T
S

 RCVD/Interv_LP
 RCVD/Interv_EQ400kbps
 RCVD/Interv_HP

f) Jitter

JITTER

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000 30000 35000

TIME

JI
TT

E
R

(m
s)

 Jitter_LP
 Jitter_EQ400kbps
 Jitter_HP

 18

g) Delay

DELAY

-50

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000

TIME(ms)

D
E

LA
Y

(m
s)

 Delay_LP
 Delay_EQ400kbps
 Delay_HP

A3. Frame Rate Statistics

a) Effect Of Load on the Frame Rate: (With equal priority)

LOAD Frame Rate

No Load 23.350254
400 Kbps 8.203800
700 Kbps 3.310573

 b) Effect of priorities of threads on the Frame rate:

Priority Frame Rate
Equal 8.203800

RTP High 3.031834
RTP Low

(Background High)
 6.564551

