Goals

Prioritized Scalable Distributed Concurrency Services

Supporting prioritized mutual exclusion on a distributed system by way of implementing
the extensions to known protocol for prioritized mutual exclusion for distributed systems.
The extensions are meant for intent locking support coupled with read, write and upgrade
lock modes. Enhancing the concurrency protocols for middleware services.

Current

Constant concurrency level experiments are being run for more than 90 nodes in the

system

on IBM SP. Variable concurrency levels, constant ratio experiments are also

being run for more than 90 nodes on IBM SP. Writing for JPDC'03 is in progress.
Understanding TAO implementation and reading in progress.

Work
(0]

Work

o

Done (During Fall, 2002)

Simulator was enhanced to add configurability with respect to request mix
specification, inter-arrival and critical section lengths, random priorities,
switching to prioritized and unprioritized version of the simulator, timing
granularities of milliseconds or microseconds.

Porting the simulator to AlX, LINUX, studying MPI, implementing the protocol
with MPI instead of TCP/IP for AlX 4.3.Support for MP_THREAD_MULTIPLE
was deemed unnecessary.

Student research competition and poster submission, acceptance and attendance at
OOPSLA 2002, sesttle.

Poster submission and acceptance at JGI, 2002.

Submission to ICDCS 2003 with the comparison of our protocol with Naimi's
protocol. For fair comparison, Naimi’'s protocol can be seen with dual
perspective: pure protocol with single lock, same functionality protocol with N
locks. Discussion of the entire protocol for the first time in a publication. Result
waited.

Submission to IPDPS 2003 with the results obtained by experiments on IBM SP
with MPI. Results include the constant ratio, variable concurrency effects,
comparison with Naimi’s protocol and adjusted request latency. Result waited.
Introduction of constant concurrency level in the experiments to observe the
response time behavior and understand it. It can be concluded that the response
time behavior is inherently super-linear and can't be better. Some interesting
theoretical explanations for the response time behavior.

Started on the TAO implementation. The model is understood but it is required to
understand some of the relevant aspects of the CORBA specification and APIs
related to concurrency services.

Done (During Last Month)

The hypothesis about getting logarithmic response times by way of keeping the
concurrency level constant was proved inaccurate. The experiments done for
constant concurrency levels indicate that even if the concurrency level is constant

(fixed number of requests active in the system at any time), the response time is
not better than linear.

0 The experimental results also imply that the clear logarithmic message overhead
behavior is lost when the system operates at constant concurrency levels. This is
due to the fact that the propagation path of the request message is prolonged due
to decreasing probability of the intermediate nodes being able to grant the request.

0 The message breakdown of the constant concurrency level experiments clearly
shows that the overall message overhead behavior is all due to the request
propagation. While other types of messages get stable at reasonably small number
of nodes, the request message overhead keeps on increasing more like linearly.

0 The experiments with constant ratio, variable concurrency levels were conducted
from 30 nodes up till 90 nodes on IBM SP. As expected the message overhead
behavior even for very large number of rodes is stable and logarithmic. However,
the response time behavior is super-linear and more such with lower ratios of
waiting time to the inter-request arrival times.

0 These results point to a distinct behavior of the protocol: Higher the degree of
concurrency better, more stable and logarithmic the message overhead. On the
other hand, higher the concurrency, worse and more super-linear the response
time. Improving the message overhead behavior worsens the response times and
vice versa

0 One possible argument is that, the total response time of each request is composed
of two elements: the transit and propagation time of the requests when it is
forwarded from one node to another, and the queuing delay when it is queued
locally by some node due to incompatibility. Now, the former element can be
derived from the message overhead behavior while the later can't be. While the
request is queued, there are no messages being passed and so, message overhead
doesn’t reflect this time that is only seen in the final response time of the request.
S0, as the concurrency level increases, more and more time is spent in the local
gqueues and less and less messages are passed. This gives us better message
overhead behavior while the response time keeps on increasing.

0 The queuing delay can be estimated by estimating the queue lengths with varying
concurrency levels. The detailed estimation function is derived and matches the
super-linear behavior of the response times. This shows that the response time
behavior is inherently super-linear O(n**2).

o0 In the TAO front, after communicating with Bala (Washington University), the
framework is clearer. It seems that each client can instantiate its own Concurrency
Service object and use the APl provided with that. Thus, the protocol can be
embedded into those APIs and hidden from the clients. It is still not clear how
exactly the concurrency objects will communicate with each other. Probably they
can register themselves with the IOR with specific naming conventions and so
they can identify each other, get references and invoke some operations on remote
objects, which are the handlers. However, in the ORB net, there might be some of
the clients not intending to use the concurrency service. Now, if they are
accessing the server object concurrently with other clients, which will interfere
with the protocol and mutual exclusion cannot be guaranteed. So, clients need to
be aware of the server objects that are concurrent.

Future Work

0 Report the latest findings to the Journal of Parallel and Distributed Computing
special issue for middleware 2003. Write, integrate and submit.

0 Experiments with Linux cluster for large number of nodes and comparison with
Naimi’s protocol for the same.

0 Make progress on the TAO front.

0 Thesis committee should be formed and formalities taken care of.

0 Requirements for this semester regarding thesis preparation depend on the advisor.

Nirmit Desai
nvdesai @unity.ncsu.edu
Date: 12-10-2002

