
Prioritized Scalable Distributed Concurrency Services

Group members
Nirmit Desai: nvdesai@cs.ncsu.edu

Project web
http://www4.ncsu.edu/~nvdesai/middlepro.html

Problem description

The project had multiple objectives:

1. Extend the protocol for scalable distributed concurrency services to support
priority levels of requests.

2. Experiment with the various priority levels to study the response time behavior
for different levels of priority.

3. Find a mechanism/policy to bound the response time of requests based on their
priorities. Experiment with keeping the concurrency level constant.

4. Make progress on the TAO front.

Current status of the abovementioned objectives

1. The implementation with priorities was already done previously. The description
of the implementation is included at the end of the document.

2. Some experiments with the prioritized implementation are already done. They

demonstrate a clear separation of response time between different kinds of
requests, but they are still not bounded.

3. Bounding the response time means having logarithmic behavior for the response

time as well as preserving the logarithmic behavior of the message overhead.

Though the message overhead behavior can be used to study the behavior of the
protocol, it may not represent the request latency accurately. This is due to the
fact that the request latency time has two components: The network delay
experienced by each of the message sent and the queuing delay due to the request
being locally queued at other nodes. While the former can be accurately estimated
by the message overhead, the later does not show up as part of the message
overhead. This means that response time behavior can be identical in ideal case or
worse than message overhead behavior. This is evident from the results shown
below for a representative experimental environment. The Message overhead is
logarithmic and bounded but the response time is linearly (sometimes
superlinearly) increasing with the number of nodes in the system.

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100
Number of Nodes

M
es

sa
ge

 O
ve

rh
ea

d

Ratio = 25 Ratio = 10

Ratio = 5 Ratio = 1

0

20

40

60

80

100

120

140

160

0 50 100
Number of Nodes

R
eq

ue
st

 L
at

en
cy

 (
m

se
c)

Ratio = 25 Ratio = 10
Ratio = 5 Ratio = 1

In this experiment, as the number of nodes in the system increases, average
number of requests active at any time also increases. This causes more conflicts
between incompatible request types thereby increasing the queuing delay.
However, the tree height increases logarithmically and so does propagation path
of requests thereby making the message overhead logarithmic. So, with the
increase in number of nodes, the queuing delay increases which is added to the
logarithmically increasing message overhead. The final product is the linearly
increasing response time.

This also means that the increase in the queuing delay should be super-linear. The
following argument may explain this:

Consider a time point during the run of the protocol. The probability of a request
mode m at such a point of time is n*p(m), where n is the number of nodes in the
system, and p(m) is the probability of an m request given by the randomized
stream of each node. This is due to the fact that request types are randomized, and
each node has an independent randomized stream. So, the probability of each of
the modes of the requests increases linearly with the number of nodes in the
system.

Let f(n) denote the function giving the number of nodes in the system. Clearly,
f(n)=n.

Let c(n) denote the number of conflicts present at any point of time.

By the compatibility matrix and the discussion above,

C(n) =
f(n).p(W).[f(n).p(IR) + f(n).p(R) + f(n).p(U) + f(n).p(IW) + f(n).p(UW) +
f(n).p(W)] +
f(n).p(UW).[f(n).p(IR) + f(n).p(R) + f(n).p(U) + f(n).p(IW) + f(n).p(UW) +
f(n).p(W)] +
f(n).p(IW).[f(n).p(R) + f(n).p(U) + f(n).p(UW) + f(n).p(W)] +
f(n).p(U).[f(n).p(U) + f(n).p(IW) + f(n).p(UW) + f(n).p(W)] +
f(n).p(R).[f(n).p(IW) + f(n).p(UW) + f(n).p(W)] +
f(n).p(IR).[f(n).p(UW) + f(n).p(W)]

Where, the p(IR)+p(R)+p(U)+p(IW)+p(UW)+p(W)=1 and f(n)=n.
So,

C(n)=
c0n**2.p(W) + c1.n**2.p(UW) + c2.n**2.p(IW) + c3.n**2.p(U) + c4.n**2.p(R)
+ c5.n**2.p(IR)

where 0 < c0, c1, c2, c3, c4 and c5 < 1 and represent the sum of various set of
probabilities in the above terms. (In fact, c0=c1=1 in our case)

therefore, C(n) is in theta(n**2)

Queue lengths will follow this n**2 trend which makes it super linear.

Here is the behavior of the C(n):

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Nodes

In
st

an
ta

ne
ou

s
co

nf
lic

ts

This is a new finding that can be studied further in the future.

On the other hand, experiments with various levels of concurrency (C=5 and
C=10) indicate that it takes significantly more number of nodes to have a stable
behavior of message overhead. In a sense, message overhead behavior loses the
clear logarithmic behavior. Response time behavior however, becomes linear but
still not logarithmic as expected.

One possible reason for this behavior could be that the tree structure when
changed dynamically is more of a list structure than a binary tree structure. Due to
that, the propagation path for requests increases linearly (instead of
logarithmically) when amortized by number of requests. So the message overhead
increases more linearly than logarithmically. The same phenomenon happens to
the response time. And with constant degree of concurrency, token transfers
should be more dominant than granting.

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Number of Nodes

M
es

sa
ge

 O
ve

rh
ea

d

Our Protocol Conc=5

Our Protocol Conc=10

This problem is crucial for understanding the behavior of the protocol and to
make educated progress for priorities too. This may lead to a solution to bound
the response time of the requests, at least for soft real-time arena.

4. In the TAO front, after communicating with Bala (Washington University), the

framework is clearer. It seems that each client can instantiate its own Concurrency
Service object and use the API provided with that. Thus, the protocol can be
embedded into those APIs and hidden from the clients. It is still not clear how
exactly the concurrency objects will communicate with each other. Probably they
can register themselves with the IOR with specific naming conventions and so
they can identify each other, get references and invoke some operations on remote

objects, which are the handlers. However, in the ORB net, there might be some of
the clients not intending to use the concurrency service. Now, if they are
accessing the server object concurrently with other clients, which will interfere
with the protocol and mutual exclusion cannot be guaranteed. So, clients need to
be aware of the server objects that are concurrent.

Prioritized implementation:

Simulation environment: Everything remains unchanged except the fact that each request
has a priority associated with it. The implementation supports N priority levels for N
nodes. Here, Each node might have a static priority associated with it or each request can
be assigned a priority dynamically which is randomized.
The response time statistics are generated based on:

o Request type: For each type of request the response time is calculated for each
level of priority

o Priority level: For each priority level, response times for all types of requests are
averaged

o Grand average: Response time is averaged over all priority levels and all request
types

Differences with the unprioritized version:

o Format of token transfer message has changed. In unprioritized version, it can be
proven that when an incoming request results in a token transfer, the queue at the
token node cannot be nonempty. So, the token transfer message did not include
the queue transfer. In prioritized version, this property does not hold. So token
transfer message includes transferring the local queue from original token node to
the new token node, which is piggybacked.

o Queuing and forwarding rule is changed. In unprioritized version, a node can
queue an incoming request locally if it satisfies the queue/forward table
constraints. In prioritized version, the same table of constraint apply in addition to
a constraint that a node cannot queue a request locally if the priority of the
pending request is lower than the priority of the incoming request. Queuing such
requests may result is priority inversion.

o Freezing mechanism is changed. In unprioritized version, a request cannot be
granted if the requested mode is frozen. In prioritized version frozen modes have
a level of priority associated with them. When a request with priority p is queued
at the token node due to incompatibility, some modes are frozen at the p priority
level. Which means that if some other request with priority q > p arrives at the
token node and the requested mode is frozen at any priority p < q, then the
constraint for the frozen mode is overruled and all the requests with such priority
q are granted based on only the compatibility constraints even if the requested
modes are frozen. This also means that requests with priority <= p still face the
frozen modes constraint as before. However, it may so happen that a request with
priority p is queued at the token node and a new request with priority m < p may
be granted because the requested mode of the new request is compatible as well as
not frozen at priority level >= m.

o New freeze messages are not sent for priority level p when the mode is already

frozen at a priority >=p.

o Queue handling is changed. The queue is now ordered based on priority level,
usage time and reception time instead of just usage time and reception time. New
requests are inserted in-order by performing a linear search.

Next steps

o JPDC submission.
o Deeper investigation of the response time behavior and progress on bounding it

based on the priorities.
o Experiment with larger number of nodes on the comparison with Naimi’s protocol

on Linux cluster.
o Continuing on the TAO front

