
Pipeline and Path analysis for Power-aware embedded architecture

CSC 714 Real Time Computer
Systems Project

Pipeline and Path analysis for
Power-aware embedded

architecture

FINAL REPORT

-Kiran Seth

Pipeline and Path analysis for Power-aware embedded architecture

Table of Contents

Introduction………………………………………..3

Problem Overview…………………………………4

Previous work………………………………………5

Current Work………………………………………6

Experiments…………………………………………7

Future Work ……………………………………….8

References…………………………………………..9

Pipeline and Path analysis for Power-aware embedded architecture

1. Introduction

In Real-Time systems, it is critical to have guaranteed temporal and logical
performance. Correct operation requires task deadlines to be met while
maintaining correctness of the operation. The Worst Case Execution Time
(WCET) for tasks is required for schedulability analysis and also for creating the
schedules. A naï ve WCET means that we are losing the opportunity of using slack
that is available in the system and also losing the ability to increase the number of
tasks admitted into the system.

Another issue in Real Time systems is the conservation of power. When

designing the system, the frequency of the processor has to be decided. Higher the
frequency, higher is the power consumption. Because of naï ve WCET bounds, we
do not know the exact frequency required by the system and significant power is
wasted in current Real Time systems due to overclocking. The processing speed or
clock frequency of the system is higher than required because a deadline cannot be
missed.

Thus both these problems can be tackled with tools that provide us with

accurate WCET bounds. In this project I have worked towards modifying existing
tools to produce tight WCET bounds for a simple pipeline that executes the
Pseudo ISA (PISA) of the Simplescalar toolset. The obvious advantages of such a
tool are explained above.

Pipeline and Path analysis for Power-aware embedded architecture

2. Problem Overview

As the deadlines of Real-Time system tighten, performance increasing

techniques like caches, pipelining, branch prediction and out of order execution
are added to embedded processors. These complex pipelines increase the
performance of embedded processors, but it is difficult to guarantee the
performance of a complex pipeline. It is very difficult to accurately measure
WCET of tasks on a complex pipeline. But for simple pipelines, it is possible to
calculate the WCET accurately. Due to the WCET requirements, simple pipelines
are preferred in hard Real Time Systems. But simple pipelines cannot show the
same performance as a complex pipeline.

A simple solution is to use a dual frequency approach. The hybrid
embedded processor will usually work at a low frequency with a complex
pipeline. It is expected that the actual execution time required is smaller than the
WCET. The tasks are now given intermediate deadlines. If the task misses any
intermediate deadline, the frequency is increased. At this time, we can also switch
the pipeline from a complex to simple pipeline. This means that since we can
guarantee the performance of a simple pipeline, we are assured that no deadline
will be missed. The low and high frequencies are chosen depending on the WCET
of the task and the actual execution time (which can be found by using simulations
of the program). One of the main requirements in this approach is accurate WCET
analysis of a program.

The goal of this project is to modify existing tools to provide accurate

WCET predictions for the SimpleScalar ISA and then to add parametric timing
analysis paradigms to the tools.

Pipeline and Path analysis for Power-aware embedded architecture

3. Previous work

Currently tools are available to perform static instruction cache simulation
(work by Dr. Mueller), static data cache simulation (work by Dr. White) and the
timing analysis of programs using path analysis and caching categorizations (work
by Dr. Healy). The tools take inputs files generated by a research compiler
(vpcc/vpo). The timing analyzer also takes input files from the static instruction
cache simulator and the static data cache simulator. But we are going to use a
modified version of the SimpleScalar simulator (provided by Dr. Rotenberg) to
calculate the actual execution times of programs using simulation. This means that
all the WCET analysis must also be done for the SimpleScalar ISA (PISA). The
static instruction cache simulator is ISA independent. But the timing analyzer
currently works with the microSparc ISA. Also, the compiler that generates PISA
binaries does not generate the input files for the various tools.

It important to perform accurate WCET of tasks for simple pipelines. The

program is first analyzed using a static instruction cache simulator and a static data
cache simulator to calculate the caching potential of all the instructions. The
instructions are categorized into always hit, always miss, first hit and first miss. To
get an accurate WCET, we need to perform path analysis for the given program
and look at the interaction between paths. The path analysis along with the caching
categorizations are used to predict the WCET of the program. Overlapping of two
operations is also taken into account (like a high latency floating point operation
and a cache miss may overlap) thus making the WCET more accurate.

Pipeline and Path analysis for Power-aware embedded architecture

4. Current work

The objective of the project is to use the existing framework for timing
analysis and use it with a different ISA and pipeline. The old timing analyzer
works with the microsparc architecture and it is being ported to the ISA used by
the Simplescalar toolset. The old timing analyzer also has a simple pipeline with 7
stages which will be changed to a 6 stage pipeline.

The modifications to the timing analyzer are-

• A new pipeline, compatible with the one used in the modified Simplescalar
timing simulator. The new pipeline is a simple pipeline with 6 stages.

• Branch prediction using a static prediction technique (currently Ball Larus
heuristic). By using a static branch prediction mechanism, the WCET bounds
can be improved because we don’t have to add the branch mispredict penalty all
the time. Any form of static branch prediction can be used (prediction using
profiling, other heuristics, etc.).

• A new query interface. The new query interface makes it easier to get the

WCET for parts of the program, instead of only giving the WCET for the whole
program.

The first step was to reverse engineer the PISA assembly to produce inputs

for all the tools (like the vpcc/vpo compiler). This means, looking at the assembly
to form basic blocks and the control flow graph (CFG). The CFG is then used to
create inputs for all the tools. After creating a software patch for reverse
engineering the assembly, Timing Analyzer’s ISA is changed to PISA. The
internal pipeline it uses for simulation is also changed so that it looks and works
just like the pipeline in the Simplescalar simulator. Thus we will be able to
analyze programs compiled using the PISA gcc and determine an accurate and
tight WCET for the programs.

Pipeline and Path analysis for Power-aware embedded architecture

5. Experiments

The following table shows the WCET calculated by the timing analyzer and
the actual execution time as computed by the Simplescalar tool.. The results are
for a 1GHz processor and are converted into time instead of cycles.

Benchmarks WCET (us) Actual execution
time (us)

WCET/actual
execution time

adpcm 3286 2428 1.35
cnt 72 71 1.01
fft 426 368 1.16
lms 173 168 1.03
srt 3508 2050 1.00
mm 2056 1755 2.00

 It can be observed that in most cases the WCET timing is very close to the
actual execution time. The only discrepancies are seen for benchmarks with
conditional statements, which may be inside loops. If one “arm” of the conditional
statement is longer than the other, the timing analyzer will assume that the longest
path will always be taken while in the simulator may usually take the shorter path.

Pipeline and Path analysis for Power-aware embedded architecture

6. Future work

The next step would be to modify the timing analyzer so that it is
parametric in terms of frequency. Currently the timing analyzer gives us the
WCET in terms of number of cycles. This means that the timing analyzer must be
run again and again for getting the WCET for different frequencies. By
parameterizing the output of the timing analyzer in terms of frequency, the timing
analyzer can be run only once and the output WCET can be used for any
frequency by simply plugging in the frequency. Parameerizing the timing analyzer
will also make it more power aware.

 Another tool that currently cannot be used with the timing analyzer is the
data cache simulator. A part of the future work could be integrating the data cache
simulator analysis components into the timing analyzer. The timing analyzer
would then be able to take data access categorizations into account in giving a
tighter and more accurate WCET.

Pipeline and Path analysis for Power-aware embedded architecture

7. References

[1] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and M. G. Harmon.
Bounding pipeline and instruction cache performance. IEEE Transactions on
Computers, 48(1):53–70, January 1999.

[2] E. Vivancos, C. Healy, F. Mueller and D. Whalley. Parametric Timing
Analysis. ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems, ACM SIGPLAN Notices, Aug 2001, pages 88-93

[3] F. Mueller. Timing Analysis for Instruction Caches. Real-Time Systems
Journal, Vol. 18, No.2/3, May 2000, pages 209-239

[4] R. White, F. Mueller, C. Healy, D. Whalley and M. Harmon. Timing Analysis
for Data Caches and Set-Associative Caches. Real-Time Technology and
Applications Symposium, Jun 1997, pages 192-202

[5] D. Burger, T. Austin and S. Bennett. Evaluating Future Microprocessors: The
Simplescalar Toolset. Technical report CS-TR-96-1308, Computer Sciences
Department, University of Wisconsin-Madison, July 1996.

[6] E. Rotenberg. Using variable-Mhz microprocessors to efficiently handle
uncertainty in real-time systems. 34th International Symposium on
Microarchitecture, December 2001.

[7] Thomas Lundqvist. "A WCET Analysis Method for Pipelined Microprocessors
with Cache Memories," PhD thesis, Dept. of Computer Engineering, Chalmers
University of Technology, Sweden, June 2002.

[8] Jakob Engblom. Effects of Branch Predictors on Execution Time. Dept. of
Information Technology Technical Report 2002-013, April 2002.

