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INTRODUCTION 
 
Problem Description: 
 
Our objective is to add support for Earliest Deadline First, Priority Inheritance Protocol and 
Priority Ceiling Emulation Protocol in RT-Linux. The default scheduler in RT-Linux is a fixed-
priority scheduler. There is no deadline monitoring or resource management (e.g. support for 
priority inheritance) functionality with the distribution we obtained from ftp.fsmlabs.com. 
  
Solved issues: 
 
Verified and implemented EDF, PIP, PCEP. The Priority inheritance protocol and Priority ceiling 
emulation protocol are used with fixed-priority scheduling mechanism. 
 
Task division: 
 
All - Verification & implementation of EDF, PIP, PCEP 
 
Test Cases: Amit choudhary 
 
Final report: Nitin Shrivastav 
 
 
BACKGROUND [8] 
 
Earliest deadline first algorithm: 
 
The earliest deadline first algorithm is an example of dynamic priority scheduling. At every 
scheduling point, the algorithm finds the job with the earliest deadline and schedules this task. 
EDF is dynamic, as different jobs will have different priorities at different point in time. 
 
Priority Inheritance Protocol: 
 
PIP is a resource access control protocol used for allocating resources that control priority 
inversions in Real-time systems. Priority inversion occurs when a higher priority job is blocked on 
a resource acquired by a lower priority job. This scenario is not ideal for Real-time systems where 
such inversions may cause some jobs to miss their deadlines. Definition of PIP is given below 
[Mueller, class slides] 
 
PIP Definition 
 
Each job J has an assigned priority (e.g., RM priority) and a current priority. 
 
1. Scheduling Rule: Ready jobs are scheduled on the processor preemptively in a priority-driven 
manner according to their current priorities. At its release time t, the current priority of every job is 
equal to its assigned priority. The job remains at this priority except under the condition stated in 
rule 3. 
 
2. Allocation Rule: When a job J requests a resource R at time t, 

 
• if R is free, R is allocated to J until J releases it, and 
• if R is not free, the request is denied and J is blocked. 

 
3. Priority-Inheritance Rule: When the requesting job J becomes blocked, the job k that blocks J 
inherits the current priority of J. The job k executes at its inherited priority until it releases R (or 
until it inherits an even higher priority); the priority of k returns to the priority it had when it 



acquired the resource R. 
 
PIP doesn't prevent deadlocks. 
 
Priority ceiling emulation protocol: 
 
PCEP is a simplification of Priority ceiling protocol. The definition of PCEP is given below: 
 
PCEP definition: 
 
Each job has an assigned priority and a current priority. System ceiling variable is global to the 
task set. Each lock has a ceiling priority that denotes the priority of the maximum priority job that 
will be acquiring it. 
 
1. Scheduling Rule: 

 
• At its release time t, the current priority p(t) of every job J equals its assigned priority. The 

job remains at this priority except under the conditions of rule 2. 
• Every ready job J is scheduled preemptively and in a priority-driven manner at its current 

priority p(t). 
 
2. Allocation Rule: Whenever a job J requests a resource R at time t, one of the following two 
conditions occur: 
 

• R is held by another job. J’s request fails and J becomes blocked. 
• R is free. 

o If J’s priority is higher than the current system ceiling, R is allocated to J, J is 
assigned the ceiling priority of mutex and System ceiling is assigned J's updated 
priority. 

o If J’s priority is not higher than the system ceiling, R is allocated to J only if the 
system ceiling is due to J's priority; otherwise, J’s request is denied and J 
becomes blocked. 

 
 
RT-Linux Basics: 
 
"RTLinux was developed at the department of computer science at the New Mexico Institute of 
Technology, Socorro NM, by Victor Yodaiken and Michael Barabanov. 
 
RTLinux (Real-Time Linux) is an extension to the Linux operating system designed to handle 
time-critical tasks. In essence RTLinux is a small real-time executive that runs the Linux OS as 
just another task (as its lowest priority task). 
 
Linux is made completely preemptable and can, if necessary, be disabled entirely in order to 
dedicate the CPU to the more important real-time tasks. This approach makes it possible to make 
use of all the facilities of standard Linux, such as X-window, networking, development 
environment etc. 
 
Design & Implementation 
 
Most operating systems, including Linux, disable interrupts in critical sections of the kernel to, 
amongst other things, achieve synchronization. This means that the kernel is non-preemptive and 
tasks running in kernel mode cannot be forced to give up the processor to another task, no matter 
the priority. To be able to guarantee the temporal behavior of real-time tasks, the designers of 
RTLinux simulate this interrupt disable/enable feature and are thereby fooling the Linux kernel 



into becoming completely preemptable. 
 
 

 
 
 
Since the standard Linux kernel runs as the lowest priority task it can freeze up for long periods of 
time. This is because the CPU is busy handling the real-time kernel tasks. All interrupts are 
caught by the real-time kernel and passed on to the Linux kernel when no real-time tasks are 
scheduled to execute. Therefore the interrupts are always available to the real-time kernel while 
still allowing Linux to disable them as needed. However, the real-time kernel in itself is not 
preemptable, but its routines are supposedly small and fast enough to not cause any significant 
delays in themselves. The default scheduler supplied with RTLinux is a preemptive fixed priority 
scheduler, for previous versions of RTLinux there exist other scheduling modules, such as 
Earliest Deadline First and Rate Monotonic. This modularity makes RTLinux flexible enough to 
support both the time and event triggered paradigms. 
 
Characteristics & Features 
 
• Support for POSIX 1003.13 "single process/minimal real-time system" profile. 
• Dynamic exchange of scheduler at runtime. 
• IPC, through Shared memory. 
• IPC, through dedicated Linux devices, RT-FIFOs. 
• Improved timer resolution. 
• Full support for SMP based systems. 
 
Real-Time tasks cannot communicate directly with the Linux processes or make use of the Linux 
kernel services, since this would impose unbounded timing constraints, instead RTLinux provides 
functions for both shared memory and FIFO queues as a means of communication and 
synchronization. The FIFO queues are implemented as standard unidirectional Linux devices 
accessible by any Linux process. The real-time tasks, as well as all kernel-contained data, are 
never swapped to disk, which eliminates the problem of unbounded response times. This is 
provided in RTLinux through the reprogramming of the separate timer chip4, which exist in some 
form in all Intel x86-based computers. This provides both periodic as well as one-shot timers." [9] 
 
 
 



EDF IMPLEMENTATION 
 
In RT-Linux, we can add new scheduler modules to implement different scheduling policies. We 
added a new scheduler module to implement edf algorithm. This module needs to be  
loaded at run-time instead of the default fixed-priority scheduler. In this section, we first discuss 
the structure of existing fixed priority scheduler module in RT-Linux, then we discuss the new 
data structures added to implement the EDF functionality, and finally the pseudo code for 
implementing the EDF functionality. 
 
  
 
Existing fixed-priority scheduler in RT-Linux: 
 
The scheduler functionality is implemented in "rtl_schedule” function in rt-
linux/schedulers/rtl_sched.c. The pseudo code for this function is described below: 
 
 
/* Pseudo code for rtl_schedule function */ 
 
int rtl_schedule(void) 
{ 
 Disable the interrupts  
  
 for (all the tasks in the task-list) /* Task list is a linked list containing information about  

every task*/ 
 { 

if (task is due to be released for next period)  /* RTL_THREAD_TIMERARMED  
flag is used to check this */ 

  { 
   if (current-time > resume time for this task)  /* Resume time for the task  

denotes the next time at which 
this task is to be released */ 

   { 
    Mark the task as ready for execution /* RTL_SIGNAL_TIMER &  

RTL_SIGNAL_READY are used to indicate this */ 
 

    Mark the task as released /* RTL_THREAD_TIMERARMED flag  
*/ 

    Update the next resume time if the task is periodic 
   } 
  } 
   
  If this task can be executed (i.e. is not suspended) and has highest priority  

among all the tasks seen so far, then store the task-id in 'next-task' variable.  
 } 
 
 if (clock-mode = ONE-SHOT) then call function find_preemptor to find the next  

scheduling point 
 
 set the clock interrupt at next scheduling point (for PERIODIC clock-mode, the next  

scheduling point is after a fixed amount of time) 
 
 If (no task has been selected in the above for loop), then select Linux task to run. 
 
 Do the context switch. 
 



 enable the interrupts. 
 
} 
 
/* Pseudo code for find_preemptor function for ONE-SHOT clock-mode */ 
/* This function finds the next preemption point in ONE-SHOT clock mode */ 
task-list * find_preemptor (task chosen) /* 'chosen' task is the next task to be run */ 
{ 
 set preemptor to NULL; 
 for (all the tasks in the task-list) 
 { 
  if (task is to be released in future) /* Checked through  

RTL_THREAD_TIMERARMED */ 
  { 
   if (task-> priority > chosen->priority) 
   { 
    if ((! preemptor) && (task->resume-time <  

chosen->resume-time)) 
    { 
     set preemptor to task 
    } 
   } 
  } 
 } 
 return preemptor; 
} 
 
EDF Implementation details: 
 
Data-structures modified for supporting EDF functionality: 
 
 File - include/rtl_sched.h: 
   
 a. Added following structure for EDF parameters 
  struct EDF { 
   hrtime_t orig_deadline; /*The actual abs. deadline when there is no  

inheritance*/ 
   hrtime_t rl_deadline; /*The relative deadline of the thread*/ 
   }; 

We are using deadline as priority, the earlier the deadline, the higher the priority. 
There is no priority field as such. 

   
b. Added a pointer to EDF structure defined above in rtl_thread_struct structure.  

This structure stores all the thread states. 
 
 
 
We made a copy of the existing rtl_sched.c file which implements scheduler functionality. Our 
EDF implementation monitors deadline misses and simply reports it to user (prints on the screen). 
Also, now the developers need to specify the relative deadlines for each task. We have added a 
new API new_pthread_make_periodic which allows users to specify deadlines along with other 
parameters. In all our implementations , we have added our own APIs when needed instead of 
modifying any existing APIs. 
 
To implement EDF, we made changes in some functions. The new pseudo code for these 
functions 



are listed below: 
 
a. rtl_schedule( ): As discussed above, this is the main function implementing scheduling. So, 
major changes are done in this function. The new pseudo code along with our changes is listed 
below: 
 
 
/* Pseudo code for rtl_schedule function */ 
 
int rtl_schedule(void) 
{ 
 Disable the interrupts  
  
 for (all the tasks in the task-list) /* Task list is a linked list containing information about  

every task*/ 
 { 
  /* New changes */ 
  if (task is periodic && task has already been released for this period && current- 

time > deadline of the task) 
   log_the_event (task has missed its deadline); 
  /* End new changes */ 
  if (task is due to be released for next period)  /* RTL_THREAD_TIMERARMED  

flag is used to check this */ 
  { 
   if (current-time > resume time for this task)  /* Resume time for the task  

denotes the next time at which this task is to be released */ 
   { 
    Mark the task as ready for execution /* RTL_SIGNAL_TIMER &  

RTL_SIGNAL_READY are used to indicate this */ 
    Mark the task as released     /* RTL_THREAD_TIMERARMED  

flag */ 
    Update the next resume time if the task is periodic 
    /* New changes */ 
    Set the deadline for this task if the task is periodic 
    /* End changes */ 
   } 
  } 
  /* New changes */ 
  If this task can be executed (i.e. is not suspended) and has earliest deadline  

among all the task seen so far, then store the task-id in 'next-task' variable.  
  else if this task has same deadline as the earliest deadline seen so far, then  

select the task which was released earlier 
  /* End changes */ 
 } 
 
 if (clock-mode = ONE-SHOT) then call function find_preemptor to find the next  

scheduling point 
 
 set the clock interrupt at next scheduling point (for PERIODIC clock-mode, the next  

scheduling point is after a fixed amount of time) 
 
 If (no task has been selected in the above for loop), then select Linux task to run. 
 
 Do the context switch. 
 
 enable the interrupts 



} 
 
 
b. find_preemptor( ): This function finds the next preemption point in ONE-SHOT clock mode. 
 
/* Pseudo code for find_preemptor function for ONE-SHOT clock-mode */ 
 
task-list * find_preemptor( task chosen) /* 'chosen' task is the next task to be run */ 
{ 
 set preemptor to NULL; 
 for (all the tasks in the task-list) 
 { 
  if (task is to be released in future) /* Checked through  

RTL_THREAD_TIMERARMED */ 
  { 
   /* New changes */ 
   if (task-> resume-time < chosen->deadline) 
   { 
    if ((! preemptor) &&  

(task->resume-time < preemptor->resume-time)) 
    { 
     set preemptor to task 
    } 
    else if (preemptor 

 && task->resume-time == preemptor->resume-time) 
    { 
     select the task which was released earlier 
    } 
   } 
   /* End changes */ 
  } 
 } 
 return preemptor; 
} 
 
 
c. new_pthread_make_periodic_np(): New API to support specification of relative deadlines 
from application programs. This function is same as pthread_make_periodic_np function of rt-
linux. We have added code to initialize EDF structure in the new function. The pseudo code for 
the API is listed below. 
 
int new_pthread_make_periodic_np(thread, start-time, period, relative-deadline) 
{ 
 disable the interrupts; 
 update period in the task structure; 
 set resume-time to start-time 
 /* New changes */ 
 set relative-deadline in task structure 
 set the absolute deadline for the first period /* All the deadlines for later jobs of this task  

will be set in rtl_schedule( ) function */ 
 /* End changes */ 
  
 call rtl_reschedule_threads 
 enable interrupts 
} 
 



  
 
d. pthread_create(): Added code for allocating memory for EDF structure. This is a long function 
and so we only show our changes made in the function. 
 
{ 
  
 Allocate memory for EDF structure; 
 set resume-time to 0; 
 set deadline to 0; 
 set priority to 0; 
 
} 
 
e. init_module(): Linux thread is handled separately by rt-linux. Its memory is assigned in 
init_module() of rtl_sched_edf.c. So, added code to allocate memory for EDF structure, and made 
the deadline of this thread as HRINFINITY. This will ensure that Linux thread will have lowest 
priority as we are using deadline field as the effective priority for scheduling. 
 
Verification: We have verified our EDF functionality. Two sample test cases along with their 
outputs are in Appendix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PCEP IMPLEMENTATION 
 
We decided to implement this resource access protocol on mutexes provided in RT-Linux. 
Semaphores were not considered as they can have multiple instances. There are 2 types of 
mutexes currently supported in RT-Linux - PTHREAD_MUTEX_SPINLOCK_NP & 
PTHREAD_MUTEX_NORMAL. We have added a new mutex-type 
PTHREAD_MUTEX_PIP_PCEP to implement PCEP and PIP policies. The new type is similar to 
PTHREAD_MUTEX_NORMAL mutex type (blocking). "ifdef" is used to distinguish between the  
two resource control policies namely PIP & PCEP. So, user needs to run the "make config" 
program provided with RT-Linux, and select the resource policy(PIP or PCEP)  to be used. 
 
 
Data structures added to support PCEP functionality: 
 
1. include/rtl_mutex.h: 
   
 Modifications:  
 

a. Added a new pointer field in the pthread_mutex_t structure to point to the thread  
which has locked this mutex. 

   
   #ifdef _RTL_POSIX_THREAD_PRIO_PROTECT 
   struct rtl_thread_struct* owner_thread; 
   #endif 
   

b. Added a new structure for implementing a linked list of all the mutexes in the  
system. This list is used to update 

  the system ceiling and priorities of threads on locking/unlocking of mutexes.  
MAXPRIO is the initial system ceiling which is lower than the priority of lowest  
thread. 

 
  #ifdef _RTL_POSIX_THREAD_PRIO_PROTECT 
  typedef struct mutex_list* list_ptr; 
  struct mutex_list { 
     pthread_mutex_t * mutex_element; 
     list_ptr next; 
  }; 
  #define MAXPRIO 0 
  #endif 
 
 c.  A mutex of type PTHREAD_MUTEX_NORMAL is used to synchronize access to  

the global data-structure ( the list of mutexes in 1b & system ceiling structure in 
 2a 

 
2. include/rtl_sched.h 
 
 Modifications:  
 

a. Added a structure for maintaining system ceiling and the thread id because of  
which the system ceiling 

  is at the present level. 
  
  struct ceiling_t { 
   int sys_ceiling; /*The system ceiling for PCEP*/ 
   struct rtl_thread_struct* ceiling_thread; 
  }; 



 
b. Added a new field called base_sched_priority in the structure rtl_thread_struct for  

storing the original priorities the thread priority will change as and when it  
locks/unlocks a mutex.      

 
c. Added a line in the function pthread_setschedparam() to initialize the  

base_sched_priority of a thread. 
 
Implementation details: 
 
The developer needs to specify the ceilings of every mutex using an API. In the init_module if the 
application program, pcep_init( ) needs to be called which creates the global mutex to 
synchronize access to global data-structures. 
 
The mutex functionality is supported in RT-Linux in rt-linux/schedulers/rtl_mutex.c file. The 
implementation details are examined function by function 
 
a. pthread_mutex_create( ): The pseudo code for this function is shown along with our changes: 
 
int pthread_mutex_lock(pthread_mutex_t * mutex) 
{ 
 switch (mutex->type) { 
  
 Case (PTHREAD_MUTEX_SPINLOCK_NP): 
  .......... 
  No changes 
             .......... 
            break; 
 
 Case (PTHREAD_MUTEX_NORMAL): 
  ......... 
  No changes 
  ........ 
  break; 
 
 /* New changes */ 
 Case (PTHREAD_MUTEX_PIP_PCEP): 
  
  if (!mutex-> valid) return EINVAL; /* Indicates that mutex has been deleted */ 
 
  rtl_spin_lock_irqsave(& mutex->lock, flags) ; /* standard function */ 
   
  while ((ret = __pip_pcep_trylock(mutex)) { 
 
  if (ret is EINVAL) then (rtl_spin_lock_irqrestore, return Error); 
  
  call rtl_wait_sleep to insert to insert this thread in the wait-queue of the mutex. 
 
  rtl_spin_lock(& mutex->lock) 
  } 
  
  rtl_spin_unlock_irqrestore(&mutex->lock, flags); 
  return 0; 
 
 /* End changes */ 
} 



 
 
b. __pip_pcep_trylock( ): This is the function in which major changes have been done for 
implementing PCEP. The pseudo code is shown below. 
 
int __pip_pcep_trylock(pthread_mutex_t * mutex) 
{ 
 #ifdef _RTL_POSIX_PRIO_PROTECT 
  self = pthread_self( ); /* store thread-id of thread trying to lock the mutex */ 
 
  pthread_mutex_lock(& global_mutex); /* Lock the global mutex */ 
   
  if ( self-> priority is less than current system ceiling) 
  { 
   unlock the global mutex; 
   return EBUSY; /* EBUSY is 1, so in the pthread_mutex_lock function, the  

calling thread will be put in the wait queue of this mutex */ 
  } 
  else if (self->priority == current system ceiling) 
  { 
   if (system->ceiling_thread != self) /* The system ceiling was not raised  

because of this thread */ 
   { 
    unlock the global mutex; 
    return EBUSY;  
   } 
  } 
  
  if (test_and_set_bit(0, &mutex->busy))  /* Mutex is already locked by some other  

thread */ 
  { 
   
   unlock the global mutex; 
   return EBUSY: 
  } 
 
  if (self-> priority < mutex->ceiling_priority) self->priority = mutex->ceiling_priority; 
 
  if (mutex->ceiling_priority is greater than current system ceiling) 
  { 
   set system ceiling to mutex->ceiling_priority; 
   store id of the current thread in system_thread which indicates that this  

thread has caused the current ceiling to be raised 
  } 
 
  update mutex->owner as self; 
  unlock global mutex; 
 #endif _RTL_POSIX_PRIO_PROTECT 
} 
 
 
c. int pthread_mutex_trylock(pthread_mutex_t * mutex) 
{ 
Case (PTHREAD_MUTEX_SPINLOCK_NP): 
  .......... 
  No changes 



             .......... 
            break; 
 
 Case (PTHREAD_MUTEX_NORMAL): 
  ......... 
  No changes 
  ........ 
  break; 
 
 /* New changes */ 
 Case (PTHREAD_MUTEX_PIP_PCEP): 
  
  if (!mutex-> valid) return EINVAL; /* Indicates that mutex has been deleted */ 
 
  rtl_spin_lock_irqsave(& mutex->lock, flags) ; /* standard function */ 
   
  ret = __pip_pcep_trylock(mutex); 
 
  if (ret is EINVAL) then (rtl_spin_lock_irqrestore, return Error); 
   
  rtl_spin_lock_irqrestore(&mutex->lock, flags); 
  
  } 
   
  return 0; 
 
 /* End changes */ 
} 
 
  
d. pthread_mutex_unlock(): There are lots of changes in this function to implement PCEP 
functionality. The functionality to implement the PCEP can be expressed in following statements: 
 

o Iterate through the linked list of mutexes to find the next highest priority locked mutex. 
The ceiling of this mutex will be the new system ceiling. 

 
o Wake-up all the threads that were blocked as they  were not eligible due to their ceiling 

priorities. 
 

o Iterate through the linked list of mutexes to find the next highest priority mutex locked by 
the current thread. The priority ceiling of this thread will be the new priority of the thread if 
it is greater than sched_base_priority.If no such mutexes exist, then thread will return 
back to its base sched priority. 

  
 
int pthread_mutex_unlock(pthread_mutex_t * mutex) 
{ 
 Case (PTHREAD_MUTEX_SPINLOCK_NP): 
  .......... 
  No changes 
             .......... 
            break; 
 
 Case (PTHREAD_MUTEX_NORMAL): 
  ......... 
  No changes 



  ........ 
  break; 
 
 /* New changes */ 
 Case (PTHREAD_MUTEX_PIP_PCEP): 
   
  #ifdef _RTL_POSIX_PRIO_PROTECT 
 
  pthread_mutex_t * highest_prio_mutex = NULL; 
  int move_prio = 0; 
  
  set  
  if (!mutex-> valid) return EINVAL; /* Indicates that mutex has been deleted */ 
 
  rtl_spin_lock_irqsave(& mutex->lock, flags) ; /* standard function */ 
   
  set mutex->owner_thread to NULL; 
   
  for (all the mutexes in the global mutex-list)  
  { 
   let 'next' be the next mutex in the global list; 
  
  /* The code below implements the following functionality  */ 
  /* Iterate through the linked list of mutexes to find the next highest priority  

locked mutex.The ceiling of this mutex will be the new system ceiling.*/ 
 
  if ((next->owner_thread) &&  /* The next mutex is locked by some thread */ 
     (!highest_prio_mutex || 

 highest_prio_mutex->ceiling_priority < next->ceiling_priority) 
    { 
     highest_prio_mutex = next; 
    }  
 
   /* The code below implements the following functionality  */ 
   /* Wake-up all the threads that were blocked as they  were not eligible  

due to their ceiling priorities.*/ 
 
   if (!next->owner_thread) 
    rtl_wait_wakeup(&next);  /* wakeup all the tasks that were  

blocked because their ceiling priority was less than the system ceiling */ 
 
 /* The code below implements the following functionality */ 
 /*  Iterate through the linked list of mutexes to find the next highest priority mutex locked  

by the current thread. The priority ceiling of this thread will be the new priority of the  
thread if it is greater than sched_base_priority. If no such mutexes exist, then thread will  
return back to its base sched priority.*/ 

  
 
 
  if ((next->owner_thread == pthread_self( ) ) && (next->ceiling_prio > move_prio)) 
    move_prio = next->ceiling_prio;  
 
  } 
 
  update the system ceiling; 
   



  update the threads priority; /* Revert it back to its base priority if no other mutex  
is locked */    

   
  unlock the global_mutex; 
 
  /* End changes */ 
  unlock the mutex; 
 
  return 0; 
} 
 
e. pthread_mutex_init( ): The changes in this function are listed in following pseudo-code: 
 
void pthread_mutex_init( ) { 
 ..... 
 No changes 
 .... 
 lock the global mutex; 
 Add the mutex to global list of mutex; 
 unlock the global mutex; 
} 
 
f. pthread_mutex_destroy( ) : The changes in this function are listed in following pseudo-code: 
 
void pthread_mutex_destroy( ) { 
 ..... 
 No changes 
 .... 
 lock the global mutex 
 Remove the mutex from global list of mutex 
 unlock the mutex 
} 
 
 
Verification: We have verified our PCEP functionality. A sample test case along with its output is 
in Appendix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PIP IMPLEMENTATION 
 
We decided to implement this resource access protocol on mutexes provided in RT-Linux. 
Semaphores were not considered as they can have multiple instances.  There are 2 types of 
mutexes currently supported in RT-Linux - PTHREAD_MUTEX_SPINLOCK_NP & 
PTHREAD_MUTEX_NORMAL. We have added a new mutex-type 
PTHREAD_MUTEX_PIP_PCEP to implement PCEP and PIP policies. The new type is similar to 
PTHREAD_MUTEX_NORMAL mutex type (blocking). "ifdef" is used to distinguish between the 
two resource control policies namely PIP & PCEP. So, user needs to run the "make config" 
program provided with RT-Linux, and select the resource policy(PIP or PCEP)  to be used. 
 
We implement the WAIT-FOR graph using adjacency matrix representation. To detect deadlock 
in the graph , we use topological sorting algorithm to detect cycles in the graph. Whenever a new 
thread or mutex is created , it is assigned a vertex number in the graph. This is implemented by 
calling a new API 'pip_register'. The graph edges are properly updated as thread acquires or 
blocks on a mutex or releases a mutex. 
 
The deadlock-detection algorithm is run when a thread tries to lock a mutex. No allocation is done 
if this allocation may result in deadlock. An error value, EDDLK is returned to application program 
indicating that deadlock might occur if it acquires this mutex. It is left to the application to handle 
the deadlocks. 
 
 
Data structures modified: 
 
1. include/rtl_mutex.h 
 
 Modifications: 

o Added following two fields in pthread_mutex_t structure 
   #ifdef _RTL_PRIO_PIP 
    int vnum; /* The vertex number of this mutex in the wait- 

for graph */ 
    struct rtl_thread_struct* owner_thread; /* The thread  

which locks this mutex */ 
   #endif 
 

o #ifdef _RTL_PRIO_PIP 
  #define EDDLK 77 
 
 
  /* Declaration for adjacency matrix. This is used to represent the wait-for graph */ 
  typedef struct adjacency_matrix * matrix; 
 
  struct adjacency_matrix { 
     int matrix_element; 
  }; 
 
  int * indegree; /* Array to store indegrees of each vertex */ 
   

o A mutex of type PTHREAD_MUTEX_NORMAL to synchronize access to 
adjacency matrix 

 
2. include/rtl_sched.h 
 
 Modifications: 

o Added a new field called base_sched_priority in the structure rtl_thread_struct for 



storing the original priority as the thread priority will change as and when it 
locks/unlocks a mutex.      

 
o Added a line in the function pthread_setschedparam()to initialize the 

base_sched_priority of a thread. 
 
 
 
 
Implementation details: 
 
We discus the implementation details function by function. The application will call API pip_init to 
initialize the data-structures for PIP. The pseudo-code is shown below: 
 
a. void pip_init( ) 
{ 
 Allocate memory for adjacent matrix; 
 Create global-mutex; 
} 
 
Then, when each mutex or thread is created, function pip_register is called to add this to wait-for 
graph. 
 
b. void pip_register( ) 
{ 
 lock the global-mutex; 
 allocate a vertex number to this mutex; 
 unlock the mutex; 
} 
 
c. pthread_mutex_lock(): This is same as pthread_mutex_lock for PCEP as we don't distinguish 
between PIP and PCEP in this function. The distinction is made in pip_pcep_trylock( ) based on 
#ifdef. For PIP #ifdef _RTL_PRIO_PIP is used. 
 
d. pcep_pip_trylock( ): This function implements most of the functionality of PIP. The pseudo-
code is explained in detail below: 
 
int pcep_pip_trylock(pthread_mutex_t * mutex) 
{ 
 #ifdef _RTL_PRIO_PIP 
  
  
 if (test_and_set(&mutex->busy,0) 
 { /* Mutex is locked by someone else */ 
   
  Add_edge(pthread_self( ), mutex); /* Add the request edge in the 

 wait-for graph */ 
 
  status = check_deadlock( ); /* Check if deadlock can occur if we block for this  

mutex*/ 
  
  if (status ==  DEADLOCK)  
  { 
   Remove_edge(pthread_self( ), mutex); 
   unlock global_mutex; 
   return EDDL; 



  } 
  else  
  { 
   inherit_priority(pthread_self(), mutex); /* This function will increase the  

priority of the owner thread of 'mutex' to the thread which is blocking on  
this mutex */ 
 

   unlock global_mutex; 
   return EBUSY; 
  } 
 } 
 else 
 { 
  Add_edge(mutex, pthread_self()); 
   
  status =  check_deadlock( ); 
 
  if (staus == DEADLOCK)  
  { 
   Remove_edge(mutex,pthread_self()); 
   clear_bit(0, &mutex->busy); 
   unlock global_mutex; 
   return EDDL; 
  } 
  
 } 
 
 update the owner thread of this mutex; 
} 
 
e. void inherit_priority( thread t, mutex m) 
 { 
  Find the thread which has acquired mutex m.Let p denote this thread; 
 
  if (p ->priority < t->priority) p->priority = t->priority; 
 } 
 
f. pthread_mutex_unlock( ): This function also has many changes for PIP implementation. The 
detailed pseudo-code is given below. 
 
  
int pthread_mutex_unlock(pthread_mutex_t * mutex) 
{ 
 
switch(mutex->type): 
 
 Case (PTHREAD_MUTEX_SPINLOCK_NP): 
  .......... 
  No changes 
             .......... 
            break; 
 
 Case (PTHREAD_MUTEX_NORMAL): 
  ......... 
  No changes 
  ........ 



  break; 
 
 /* New changes */ 
 Case (PTHREAD_MUTEX_PIP_PCEP): 
  
  if (!mutex-> valid) return EINVAL; /* Indicates that mutex has been deleted */ 
 
  rtl_spin_lock_irqsave(& mutex->lock, flags) ; /* standard function */ 
   
  lock the global mutex 
 
  Remove_edge(mutex, pthread_self()); 
   
  for (all resources locked by this thread) 
  { 
   find the highest priority thread blocking on this resource; Call this thread t 
   if (t->priority > pthread_self()->priority) inherit_priority( ); 
  } 
 
  if (t == NULL) then move  

pthread_self->priority to pthread_self->base_sched_priority; 
  unlock the global mutex; 
 
  unlock the mutex; 
 
 /* End changes */ 
} 
 
   
g. pthread_mutex_trylock( ): This is same as for PCEP. 
 
h. check_deadlock( ): This function runs topological sorting algorithm to detect cycles in the 
Adjacency matrix. 
 
int check_deadlock( ) 
{ 
 
 for (all the vertexes in the vertex list) 
 { 
  v = find_new_vertex_indegree_zero( ); 
  if (v == -1)  
   return EDDLK; 
 
  for (all vertex w adjacent to v) 
   indegree[w]--; 
 } 
 return NODDLK; 
} 
  
 
Verification: 
 
PIP functionality has been verified. Two test cases are listed in Appendix. One test case is for 
testing deadlock condition and other test case is a complex one with multiple priority inheritance. 
 
 



OTHER ISSUES 
 
These were some of the issues we faced during the implementation: 
 

o Installation issues: The 'gcc' version was causing trouble in installation. "kgcc" is required 
for RT-Linux 3.1 

 
o De-bugging issues: The debugging was not easy as we were not able to use GDB. So, 

whenever there was some bug in the code, kernel crashed and required a re-boot. 
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APPENDIX 
 
In all the test cases described below, the words “task” and “thread” mean the same thing. All our 
resources are mutexes. 
 
Test case for PIP: 
 
There are two test cases. The first one had been discussed by Dr. Mueller in class and the 
second is a simple test case showing deadlock avoidance. 
 
Test Case 1 
 
The figure of this test case as discussed by Dr. Mueller is listed below and our output matches 
the example. The priorities are listed below. Priority 5 has highest priority. 
 
Task No. Priority 
1 5 
2 4 
3 3 
4 2 
5 1 
 
 

 
 
 
 



We will denote J5 as task 5 and so on. 
Initially task 5 runs and acquires resources (mutexes) 1 and 2. Now, task 4 runs and acquires 
mutex 3. Task 2 and 1 block on mutex 2. Task 5 runs at Task 2’s priority and then at Task 1’s 
priority and so on. The priority change is reflected in the output. 
 
The output is listed below. 
 
RTLinux PIP test starts on CPU0 
Thread 5 running at priority 1. 
Thread 5 abt to lock mutex 1 ... 
Thread 5 mutex1 lock returned 0 
Thread 5 abt to lock mutex 2 ... 
Thread 5 mutex2 lock returned 0 
Thread 5 is about to sleep for 500000 ns 
Thread 4 running at priority 2. 
Thread 4 abt to lock mutex 3 ... 
Thread 4 mutex3 lock returned 0 
Thread 4 is about to sleep for 500000 ns 
Thread 3 running at priority 3. 
Thread 3 is about to sleep for 500000 ns 
Thread 2 running at priority 4. 
Thread 2 abt to lock mutex 2 ... 
Thread 1 running at priority 5. 
Thread 1 abt to lock mutex2... 
Thread 5 running at priority 5. 
Thread 5 abt to unlock mutex 2... 
Thread 5 mutex2 unlock returned 0 
Thread 1 mutex2 lock returned 0 
Thread 1 abt to unlock mutex 2... 
Thread 1 mutex2 unlock returned 0 
Thread 1 abt to lock mutex3... 
Thread 4 running at priority 5. 
Thread 4 abt to lock mutex 1 ... 
Thread 5 abt to unlock mutex 1... 
Thread 5 mutex1 unlock returned 0 
Thread 4 mutex1 lock returned 0 
Thread 4 abt to unlock mutex 1... 
Thread 4 mutex1 unlock returned 0 
Thread 4 abt to unlock mutex 3... 
Thread 4 mutex3 unlock returned 0 
Thread 1 mutex3 lock returned 0 
Thread 1 abt to unlock mutex 3... 
Thread 1 mutex3 unlock returned 0 
Thread 1 ends. 
Thread 2 mutex2 lock returned 0 
Thread 2 abt to unlock mutex 2... 
Thread 2 mutex2 unlock returned 0 
Thread 2 ends. 
Thread 3 running 
Thread 3 ends. 
Thread 4 running at priority 2. (returned to base priority) 
Thread 4 ends. 
Thread 5 running at priority 1. (returned to base priority) 
Thread 5 ends. 
 
 



Test Case 2 
 
It is a simple test case which exhibits deadlock avoidance. Task 1 acquires resource (mutex) 3. 
Task 2 acquires  mutex 1. Task 3 acquires mutex 2. Now, task 2 blocks on mutex 2 and task 3 
blocks on mutex 3. Now, task 1 wants to acquire mutex 1 and if it blocks on mutex 1, we have a 
deadlock. So, task 1 is not allowed to block on mutex 1. 
 
The output is listed below. 
 
RTLinux deadlock test starts on CPU0 
Thread 1 abt to lock mutex3... 
Thread 1 mutex3 lock returned 0 
Thread 1 is about to sleep for 500000000 ns 
Thread 2 abt to lock mutex 1... 
Thread 2 mutex1 lock returned 0 
Thread 2 is about to sleep for 5000000 ns 
Thread 3 abt to lock mutex 2... 
Thread 3 mutex2 lock returned 0 
Thread 3 is about to sleep for 5000000 ns 
Thread 2 abt to lock mutex 2 ... 
Thread 3 abt to lock mutex 3 ... 
Thread 1 abt to lock mutex1... 
Thread 1 mutex1 lock returned 77 
Locking/Blocking of mutex1 by Thread 1 will result in DEADLOCK 
So, the mutex was not granted/not allowed to block. 
Thread 1 abt to unlock mutex 3... 
Thread 1 mutex3 unlock returned 0 
Thread 1 ends. 
Thread 3 mutex3 lock returned 0 
Thread 3 abt to unlock mutex 2... 
Thread 3 mutex2 unlock returned 0 
Thread 3 abt to unlock mutex 3... 
Thread 3 mutex3 unlock returned 0 
Thread 3 ends. 
Thread 2 mutex2 lock returned 0 
Thread 2 abt to unlock mutex 1... 
Thread 2 mutex1 unlock returned 0 
Thread 2 abt to unlock mutex 2... 
Thread 2 mutex2 unlock returned 0 
Thread 2 ends. 
 
 
Test case for EDF: 
 
There are two test cases for EDF. The first task set is schedulable under edf. The second task set 
has utilization above 1 and hence there are deadline misses. 
 
Test Case 1 
 
Task set: All times are in nanoseconds. The reason for the phases being different is that RT-
Linux doesn’t execute a task in its first period. This is because as soon as you enter the while(1) 
loop, you do a pthread_wait_np(). This suspends the thread till its next release time. So, 
effectively even if all the tasks are released at the same time, it appears as though they were 
released at different times. That is, at the start of the second period. 
  
Task 1: (500000000, 100000000, 500000000, 500000000) 



Task 2: (800000000, 100000000, 800000000, 800000000) 
Task 3: (1000000000, 100000000, 1000000000, 1000000000) 
 
The output is listed below. 5 means that the Task with period 500000000 is running and so on. 
 
5   8   5   10 
5   8   5   10 
8   5   5   10 
8   5   5   8   10 /*End of a hyperperiod*/ 
5   8   5   10 
5   8   5   10 
8   5   5   10 
8   5   5   8   10 /*End of a hyperperiod*/ 
5   8   5   10 
5   8   5   10 
8   5   5   10 
8   5   5   8   10 /*End of a hyperperiod*/ 
5   8   5   10 
5   8   5   10 
8   5   5   10 
8   5   5   8   10 /*End of a hyperperiod*/ 
 
 
Test Case 2 
 
Task set: All times are in nanoseconds. Here we show deadline misses. Since there are three 
tasks with period 200000000 ns and execution time as 100000000 ns, the total utilization is more 
than 1. So, this task set is not schedulable and hence we see deadline misses. 
  
Task 1: (200000000, 100000000, 200000000, 200000000) 
Task 2: (200000000, 100000000, 200000000, 200000000) 
Task 3: (200000000, 100000000, 200000000, 200000000) 
 
The output is listed below. Here the tasks are identified by their task ids. We can see that while 
the Task c0ea8000 was running, it missed its deadline and the scheduler reported it. 
 
Task c0d18000 running 
Task c0d18000 finishes 
Task c0a88000 running 
Task c0a88000 finishes 
Task c0ea8000 running 
Task c0ea8000 missed its deadline 
 
 
Test case for PCEP: 
 
There are 4 tasks and 4 resources in this test case. The resources are mutexes. Priority 4 has 
highest priority. 
 
Task No. Priority 
1 4 
2 3 
3 2 
4 1 
 
 



Mutex No. Ceiling 
1 4 
2 4 
3 3 
4 2 
 
First task 4 runs and acquires mutexes 4 and goes to sleep. The system ceiling and task 4’s 
priority is raised to 2. Now, task 3 runs but it blocks on mutex 3 as its priority is equal to the 
system ceiling and it is not because of this task. 
Next task 2 runs and acquires mutex 2 and goes to sleep. The system ceiling and task 2’s priority 
is raised to 4. Now, task 1 runs but it blocks on mutex 1 as its priority is equal to the system 
ceiling and it is not because of this task. 
Next task 2 runs and locks mutex 3 successfully. This is because mutex 3 is free and the system 
ceiling is 4 which is also equal to the inherited priority of task 2. And task 2 was the task which 
raised the system ceiling. 
 
 
So, we see the proper PCEP functionality. The other parts of the output are not as significant as 
the initial part which has been explained above. 
 
The whole output is listed below. 
 
RTLinux PCEP test starts on CPU0 
Thread 4 abt to lock mutex 4 ... 
Thread 4 mutex4 lock returned 0 
Thread 4 is about to sleep for 900000 ns 
Thread 3 abt to lock mutex 3 ... 
Thread 2 abt to lock mutex 2 ... 
Thread 2 mutex2 lock returned 0 
Thread 2 is about to sleep for 300000 ns 
Thread 1 abt to lock mutex1... 
Thread 2 abt to lock mutex 3 ... 
Thread 2 mutex3 lock returned 0 
Thread 2 is about to sleep for 300000 ns 
Thread 2 abt to unlock mutex 3... 
Thread 2 mutex3 unlock returned 0 
Thread 2 abt to unlock mutex 2... 
Thread 2 mutex2 unlock returned 0 
Thread 2 ends. 
Thread 1 mutex1 lock returned 0 
Thread 1 abt to unlock mutex 1... 
Thread 1 mutex1 unlock returned 0 
Thread 1 abt to lock mutex2... 
Thread 1 mutex2 lock returned 0 
Thread 1 abt to unlock mutex 2... 
Thread 1 mutex2 unlock returned 0 
Thread 1 ends. 
Thread 4 abt to unlock mutex 4... 
Thread 4 mutex4 unlock returned 0 
Thread 3 mutex3 lock returned 0 
Thread 3 abt to unlock mutex 3... 
Thread 3 mutex3 unlock returned 0 
Thread 3 abt to lock mutex 4 ... 
Thread 3 mutex4 lock returned 0 
Thread 3 is about to sleep for 500000 ns 
Thread 3 abt to unlock mutex 4... 



Thread 3 mutex4 unlock returned 0 
Thread 3 ends. 
Thread 4 ends. 
 


