

ANALYSIS OF A DYNAMIC VOLTAGE AND
FREQUENCY SCALING ALGORTIHM ON

XSCALE.

CSC 714 Project.
Dr. Frank Mueller

Prasanth Ganesan, Shobhit Kanaujia, Ishdeep Sawhney
{pganesa, sokanauj, issawhne}@unity.ncsu.edu

Frequency Scaling:

Using the methods described in our previous report, we have been
able to acheive frequency scaling on the IPAQ. We are using the
mmap () - approach to set the CCCR register, and linking a function
written in assembly to set the CCCLKCFG register. The effects of
frequency scaling were observed by simply timing the execution time
of a particular loop at various frequency settings.

We also explored various settings to observe the possible frequencies
at which the IPAQ would work. From section 4.2 of [1], we plan to
use the recommended operational voltage for various frequencies to
calculate power-savings.

Note: It is still not clear as to what hardware suppport is available to actually
change the voltages. The calculations will suffice for the simulation purposes,
although we might not be actually changing the voltages.

The following is an excerpt of our test loop:
"

 SetFrequency(i);
 dwStartTime = GetTickCount();
 for(k=0;k<1700000;k++);
 dwFinishTime = GetTickCount();
 diff = (int)(dwFinishTime-dwStartTime);

"

SetFrequency() is our function which sets the registers to do the
frequency scaling. The above test-loop was executed at various
frequencies and the observed results are as below:

Frequency Execution Time (msec)

99.53 210

117.96

175

149.295

138

176.94

117

199.06

103

235.92

87

298.59

69

353.88

58

398.12

52

471.84

43

597.18

35

** There is slight jitter in the execution times; we have observed it to be within
+/- 5% max. We are currently exploring how to minimise other OS Activities
in order to reduce this jitter.

Static DVS Scheduling:

Implemented the static DVS scheduling algorithm and performed
frequency scaling. Our tasks for the simulation were function calls
that ran for values slightly less than the WCET of the task. The task
set used for the simulation was taken from [2]. The maximum
frequency at which we operate the Ipaq is 597.18 MHz. On
computing alpha, the lowest frequency at which the task set becomes
schedulable is 471.84 MHz.

To simulate actual execution time of the task less than the WCET, we
generate a random value in the range of 0.3 < rand 0.8 and multiply it
with the WCET.

We currently have a framework to implement the other frequency
scaling algorithms mentioned in the above paper. We shall be
running the dummy tasks as threads instead of function calls in future
simulations. Our scheduler shall be separate thread in that case
against the static case where our scheduler was part of the main
thread.

By running our thread at the highest priority and not making any
system calls, we are able to reduce jitter in our observations as of now.

Computing time issues:
We tried using the GetThreadTimes() API to observe compute time
of threads, but unfortunately the structure that stores the execution
time of the thread is destroyed when the thread exits. Hence we
expect our scheduler to maintain our own time schedule with the
help of the GetTickCount() call that gives the milliseconds elapsed

since the system was started.

Tasks at hand & Timetable:

- Implement the Look Ahead/Cycle Conserving DVS scheduling
algorithm (Nov. 18 – Nov. 25)
- Come up with mechanisms to bench mark and perform
measurements and analysis. We will also consider making any
enhancements if feasible. (Nov. 26 – Dec. 2)

Distribution of Work:

Understanding of Algorithms and Design issues:
Investigators: Ishdeep, Prasanth, Shobhit. (Status: In Progress)

Implementing Frequency Scaling APIs:
Investigators: Prasanth, Shobhit. (Status: Completed)

Implementation of task-simulations:
Investigators: Ishdeep, Prasanth. (Status: In Progress)

References:
[1]. Electrical, Mechanical, and Thermal Specification Datasheet for PXA250.
ftp://download.intel.com/design/pca/applicationsprocessors/manuals/27852
4-001.pdf

[2].
Padmanabhan Pillai, Kang G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems (2001)”, 18th ACM Symposium
on Operating Systems Principles.

