
 1 

 
 
 
 
 
 
 
 
 
 
 

 
ANALYSIS OF A DYNAMIC FREQUENCY 

SCALING ALGORTIHM ON XSCALE. 
 
 
 
 
 
 
 
 
 

Group 9 
 

Ishdeep Singh Sawhney (issawhne@unity.ncsu.edu) 
Shobhit Kanaujia (sokanauj@unity.ncsu.edu) 
Prasanth Ganesan (pganesa@unity.ncsu.edu) 



 2 

 
 
TABLE OF CONTENTS 
 

Solved Issues: _______________________________________3 
Results: ____________________________________________5 
Simulator Design: ____________________________________9 
Open Issues: _______________________________________ 10 
References: ________________________________________ 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

 

Solved Issues: 
Overall, we have completed the implementation of simulator for both, the static-EDF and the 
cycle-conserving EDF. Here we talk about the various issues that were resolved. 
 
1. Mapping hardware addresses. (Shobhit, Prasanth) 
 In order to do frequency scaling, we need to setup registers in the processor. 
Thus we need a way to write to these registers from the application-level. We explored 3 
possible solutions: 
Ioctl-approach: 
 KernerlIoControl () is an API provided by WinCE, which can be used to 
access hardware locations. Here we actually depend on the WinCE API to provide us an 
ioctl () call (i.e. an appropriate ioctl-code) for accessing clock/power management 
registers. There is not great detail in documentation; the ioctl-codes that we could find did 
not seem to be ones for accessing the power/clock management registers. Hence this 
approach was abandoned. 
Mmap- approach: 
 Most of the processor registers exist at well known addresses. We can obtain a 
virtual address for those well-known addresses by using WinCE APIs. The APIs available 
for this approach are: 
VirtualAlloc (), VirtualCopy (), MapIoSpace (), TransBusAddrToVirtual () 
Inline assembly: 

CCLKCFG coprocessor register is not mapped to a well-known hardware 
address, so in order to access that register we’d most-probably have to do inline assembly. 
 We are using the mmap () - approach to set the CCCR register, and linking a 
function written in assembly to set the CCCLKCFG register. This problem was solved by 
using a combination of Mmap approach and inline assembly. 
 
2. Windows API (Prasanth, Ishdeep) 
 Windows CE provides a large API. This API is overwhelming to start with 
and we had to identify the necessary API functions. We required functions to manipulate 
thread priority, thread quantum and for maintaining time. The following API functions are 
the important few that we have used: 
Thread API :CreateThread(),ResumeThread(),SetThreadPriority(),GetThreadPriority(), 
CeSetThreadQuantum(). 
Time related API: GetTickCount() 
Suplementary API : List, Text and File manipulation API. 
 
3. Assembly programming under eVC++ for ARM (Shobhit) 
  The ARM Programmers guide [4], talks about interleaving C and Assembly 
code. The most relevant part of it is the APCS (Arm Procedure Call Standard) which 
specifies the register-usage for the ARM procedures and also the syntax for procedures  
implemented in assembly. We have implemented two assembly routines, to read/write 
from CCLKCFG (the co-processor register). 
 



 4 

 
 
4. Scheduling (Shobhit, Prasanth, Ishdeep) 
 There were various choices available to do scheduling. We could have taken 
any of the following approaches: 
Scheduler Thread: 
 We can map each job on a separate thread and then use a separate thread for 
the scheduler. The scheduler runs at a high priority and since Windows CE does not 
preempt a higher priority thread for a lower priority thread (unless there is resource 
contention), we can run the scheduler as a high priority thread and then schedule the lower 
priority threads for the required time quantum. There are probably some threads for the 
kernel that are being scheduled which give non-deterministic behavior to this scheme. This 
is further discussed in the open issues. 
Scheduler as wrapper: 
 In this scenario the scheduler would be executed as a wrapper around the 
tasks. This simple scheme does not protect against malicious user tasks and does not 
provide preemption. The additional control can be provided by timers but this approach 
was not used because of other simpler solutions. 
Tasks as functions: 
 Jobs can be scheduled as function calls. This gives good estimates of time but 
has problems similar to the previous scheme. The main advantage is that this is a very 
lightweight method. 
Simulation: 
 This method provides good control over timing and scheduling of jobs. 
According to the calculated alpha (utilization), the processor frequency is varied. The 
scheduler is executed at the highest priority (THREAD_PRIORITY_TIME_CRITICAL) 
and has complete control on timing. The time that the scheduler runs is adjusted into the 
next job's execution time and hence effectively we have scheduler running in zero time. 
This scheme implements the salient features of all the above schemes without the added 
complexity. However, this forms a simulation environment and real jobs cannot be 
scheduled with this approach. 
 
5. Minimizing interference  (Shobhit, Ishdeep) 
 There are a few kernel threads that are scheduled routinely to do 
housekeeping jobs. These are unpredictable and there is lack of information due to the 
proprietory OS. This caused our scheduling assumptions to fail in our scheduler 
implementation. We have reduced such interferences by removing the extra battery pack, 
the PCMCIA card running 802.11 and also disabling the Bluetooth system. Further we run 
our scheduler at the highest priority to reduce preemption.(The Windows CE 
documentation warns against running the threads at the highest priority for long durations.)  
 
6. Scheduler Time included in job (Prasanth, Shobhit) 
 There were a couple of choices available to maintain the time.We could have 
maintained time ourselves but this has overhead of incrementing time. We can use the 
kernel timebut this also does not yield a clean solution. Windows CE provides a function 
called GetTickCount() which returns the time in milliseconds since system startup, this 
was a convenient function to use for keeping time. However since the scheduler runs 
between jobs but is not accounted for in the task utilization calculations, this can possibly 



 5 

cause deadline misses which have to be prevented under all circumstances since this is a 
hard realtime system. As described above, we include the scheduler execution as part of 
the next job's execution time and hence have the scheduler running for free. 
 
7. Voltage scaling algorithm (Shobhit, Prasanth) 
 We read the various papers on DVS algorithms and decided to work on the 
algorithms presented in the paper by Padmanabhan Pillai. The paper presents 3 algorithms. 
We started with the basic static scheduling algorithm. This was easy to implement and 
weeded out or exposed the platform issues. We implemented the Cycle-conserving 
algorithm  next and were to implement the look-ahead DVS before running out of time. 
  
8. Preemption not discussed but implemented (Ishdeep,Shobhit, Prasanth) 
 Pillai's paper does not discuss preemption of tasks but we have taken care of 
preemption of job's because of higher priority job being released during the execution of a 
job. If preemption will happen, we schedule the lower priority job till the preemption point 
in time rather than scheduling it to run to completion. 

Results: 
 We present the simulation results for three task-sets for both the static EDF 
and the Cycle-Conserving EDF Algorithm. 
The task sets used are: 
U = 0.5 
Task     P    D    E 

A 4 4 1 

B 20 20 3 

C 30 30 3 

 
U = 0.75 
Task     P    D    E 

A 8 8 3 

B 14 14 1 

C 10 10 3 

 
U = 1.0 
Task     P    D    E 

A 4 4 2 

B 8 8 2 

C 12 12 3 



 6 

Average Frequency v/s Utilization. 

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1 1.2

Utilization

P
ow

er
(F

re
qu

en
cy

)

Series1

Series2

 
Series 1 Static 
Series 2 Cycle-Conserving 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

Processor Frequency v/s Tick (Cycle  Conserving).  

0

50

100

150

200

250

300

350

400

450

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

Series1

Series2

Series3

 
Series 1 CC, U =1 
Series 2 CC, U = 0.75 
Series 3 CC, U = 0.50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 8 

 
Processor Frequency v/s Tick (Cycle Conserving and Static) 

0

50

100

150

200

250

300

350

400

450

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

Series1

Series2

Series3

Series4

Series5

Series6

 
series 1 Static, U =1 
series 2 Static, U = 0.75 
series 3 Static, U = 0.50 
series 4 CC, U =1 
series 5 CC, U = 0.75 
series 6 CC, U = 0.50 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 9 

 

Simulator Design: 
Implementation (Prasanth, Shobhit) 
The salient features of the implementation are below: 

- The design is similar for both the static scheduling and the cycle conserving case. 
Both follow the EDF scheme while the computation of the operating frequency 
occurs only once in the static scheduling case while it occurs at each job release 
and completion stage in the cycle conserving scheduling case.  

- The scheduler runs at every tick. As per the simulation, the scheduler is part of 
each job as well as the idle task. To handle the overhead of the simulator at the 
lowest frequency we have set our tick to 10 msec. This ensures the scheduler 
completes execution before the tick is over. The remaining time available in the 
tick period is used to do the work of the task ( which in our case is an idle loop). 
Thus our scheduler takes zero-time, since the scheduler time is accounted towards 
task-execution time. 

- The scheduler operates in the following steps at every tick: 
o Check if there are any new jobs that have been released and add them to 

the job queue in an EDF manner. 
o Check if any job has missed it’s deadline and remove the job from the list. 
o Release the first job in the job queue or execute a previously uncompleted 

job. 
o On job release compute the utilization ( alpha ) based on WCET for the 

current task and actual execution for the other tasks in the task set. 
o Scale the frequency as per the computed alpha. 
o Run the job for a factor of time of the WCET, but as a multiple of the tick 

count. 
o Depending on the scaled frequency update the running time of the job to 

the newer period. ( expand of the job time to map the lowering in 
frequency) 

o In case of preemption, the frequency at which the pre-empted job operates 
is the frequency set by pre-empting job on it’s completion. 

o On job completion update the actual execution time ( used by other jobs to 
compute alpha) and scale frequency again. 

 
 
 
 
 
 
 
 
 

 
 



 10 

 
 
 

Open Issues: 
 
Kernel Scheduling of thread (Ishdeep) 
 The Windows CE documentation describes priority levels available for 
threads but the documentation falls short on description of kernel threads. This lack of 
information causes inability in correctly predicting the order of execution of threads. One 
of the problems encountered was that a thread gets preempted if it makes a kernel call, 
irrespective of its priority. It was difficult to use SuspendThread() and ResumeThread() to 
get better predictability because a call to SuspendThread() can fail repeatedly and also 
ResumeThread() should be called the exact number of times as SuspendThread() to resume 
execution of a thread. To get complete predictability; complete control over the processor 
is required otherwise deadline misses may occur. Also there is a huge time penalty due to 
thread creation for each new job. These difficulties can be overcome by making the system 
utilization around 60% and also running jobs for maximum 60-70% of their worst case 
execution time.   
  
Screen flickering  
 According to Intel Developer's Manual, the following steps should be 
followed before a power change sequence: 
-  Disable the LCD Controller or configure it to avoid the effects of an interruption in the 
LCD clocks and data from the application processor. 
-  Configure peripheral units to handle a lack of DMA service for up to 500 µs. If a 
peripheral unit can not function for 500 µs without DMA service, it must be disabled. 
-  Disable peripheral units that can not accommodate a 500 µs interrupt latency. The 
interrupts generated during the Frequency Change Sequence are serviced when the 
sequence exits. 

These operations are not being performed at present and must be performed. 
 
Look Ahead RT-DVS 
 Future work can involve implementing the third algorithm suggested by Pillai 
or any other DVS algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 



 11 

 
 
 

References: 
[1]. Electrical, Mechanical, and Thermal Specification Datasheet for PXA250. 
ftp://download.intel.com/design/pca/applicationsprocessors/manuals/27852 
4-001.pdf 
[2].Padmanabhan Pillai, Kang G. Shin, “Real-Time Dynamic Voltage Scaling for 
Low-Power Embedded Operating Systems (2001)”, 18th ACM Symposium 
on Operating Systems Principles. 
[3] www.msdn.microsoft.com 
[4]. http://www.mculand.com/sub2/arm7tdmi/pg174000.pdf 
 


