

Studying Sleep Modes on the PowerPC 405LP processor
Project Report

Prepared by
Tricia Glidewell (taglidew), Deepa Srinivasan (dsriniv)

Web page: http://www4.ncsu.edu/~dsriniv/csc714/index.html
Fall 2005

CSC 714: Real-time Systems
North Carolina State University

http://www4.ncsu.edu/~dsriniv/csc714/index.html

CSC714 Final Report Page 2 of 9

1 Problem description
Energy consumption has become a vital design constraint in embedded systems. The demand for
efficient energy management is critical in portable and embedded devices where the available
battery service life is critical. It is also important in non-embedded systems so as to conserve
energy consumed to bring down costs and also for accurate infrastructure support (for e.g., in a
datacenter, the power consumed by several servers can impact the cooling needed for the room).
Hence, it is an important field of study to enable efficient power management of devices, both
embedded and otherwise. One of the main ideas in power management is to detect when a
system is idle and scale down the power consumed in that state. When the system is at peak (or
comparable), it is scaled back up so that the performance impact is kept minimum. Dynamic
Voltage Scaling (DVS) is widely supported in current processors so as to maximize battery
life/minimize power consumption in various systems. Further, certain components of a system
can also be set to different sleep or standby modes wherein they are completely inactive and
hence consume minimum or no power, thus reducing leakage power or power consumed in an
idle state of the system. With recent advances in manufacturing technology, leakage or static
power dominates the power consumption in a system, rather than the power consumed when a
device or system component is active. Hence, it is important to study this aspect of power
management in detail.

In our project, we used the PowerPC 405LP processor board the 405LP is based on the
PowerPC 405 processor core and additionally offers power efficiency through Dynamic Voltage
Scaling (DVS). It also supports standby or (two different) sleep modes, as described above. The
main goal of our project was to study these sleep modes on the 405LP processor board. In
particular, we experimentally measured the overhead of using/enabling the sleep modes i.e.
when a component in the system goes into a sleep mode, what is the time delay, from when it is
needed to be active again to when it actually becomes active. This time delay will be important
for real-time applications since it will need to be taken into account while determined task
schedules (according to deadlines) and system idle time. As a stretch goal for our project, we
integrated the measured overhead for sleep modes with a real-time scheduling algorithm (EDF).

2 Overall accomplishments
As part of our project, we completed the following major milestones. Note that all parts of this
project were worked on and completed by Deepa Srinivasan and Tricia Glidewell together.

1. Acquainted ourselves with the 405LP development board and development environment.
This involved connecting to the board and running sample programs. We also went through
the relevant parts of the Linux kernel (including the Dynamic Power Managament or DPM
module) to understand the power management modifications done for the 405LP.

2. We read relevant current literature (see References section), to better understand the 405LP
processor system as well as power management techniques.

3. We investigated various timer mechanisms available on the 405LP to determine which one is
most suited for use to measure sleep overhead in fine granularity (in the scale of
microseconds). Through our research and experiments, we determined that the

CSC714 Final Report Page 3 of 9

Programmable Interrupt Timer (PIT) was the best suited. However the PIT did not seem to be
available during a sleep mode, and hence could not be used for microsecond-level wakeups.
Still, we were able to use the PIT right before and after a sleep and wakeup to determine
overhead (as presented in the Results section).

4. We modified an existing application program to exercise the various sleep modes on the
405LP to test our modification and take overhead measurements.

5. As part of our stretch goal, since we accomplished the above milestones, we incorporated the
measured overheads into a real-time scheduling algorithm (EDF) simulator (the source code
and outputs from the program are attached with our report).

3 Results
This section presents the overhead values that we measured experimentally after incorporating
our kernel modifications. These measurements were obtained using the PIT that decremented at a
rate of 1.048576 MHz. For each of the modes we studied, we obtained 10 different readings, that
are listed in Tables 1, 2 and 3. The modes we studied are:
Clock-suspend: In this mode, the output of the PLL is stopped. No units are powered down, and
so no state is lost. SDRAM must held in self refresh to avoid losing SDRAM contents. On
wakeup, the PLL continues and processing resumes exactly where it left off. Hence we expect no
overhead on wakeup, as is evidenced in Table 2.

Suspend: In this mode, the SDRAM is not powered off, so state can be saved there as long as
SDRAM is put into self-refresh mode prior to the sleep.

Further detailed descriptions of the power modes can be found in the 405LP-sleep.txt file that is
part of the 405LP Linux kernel source tree.

Table 1: Measured overhead values for suspend mode of 405LP
Sleep

Overhead
Wakeup

Overhead

Cycles s Cycles s
1 218 228.59 80 83.89
2 216 226.49 79 82.84
3 227 238.03 77 80.74
4 219 229.64 79 82.84
5 215 225.44 77 80.74
6 215 225.44 77 80.74
7 216 226.49 79 82.84
8 214 224.40 77 80.74
9 215 225.44 79 82.84

10 215 225.44 76 79.69

CSC714 Final Report Page 4 of 9

Table 2: Measured overhead values for clock-suspend mode of 405LP
Sleep

Overhead
Wakeup

Overhead

Cycles s Cycles s

1 161

168.82

0

0.00

2 160

167.77

0

0.00

3 161

168.82

0

0.00

4 161

168.82

0

0.00

5 161

168.82

0

0.00

6 160

167.77

0

0.00

7 161

168.82

0

0.00

8 161

168.82

0

0.00

9 160

167.77

0

0.00

10 161

168.82

0

0.00

Table 3: Measured overhead values for suspend mode of 405LP (invoked via the U63
button on the processor board)

Sleep Overhead Wakeup
Overhead

Cycles s Cycles s
1 229

240.12

78

81.79

2 228

239.08

78

81.79

3 229

240.12

77

80.74

4 226

236.98

79

82.84

5 228

239.08

78

81.79

6 227

238.03

78

81.79

7 216

226.49

81

84.93

8 227

238.03

76

79.69

9 227

238.03

76

79.69

10 221

231.74

79

82.84

4 Detailed Notes
In this section, we present complete details of the work we did for this project, both to
demonstrate our methodology and research, as well as serve as reference for future extensions
and/or related work.

4.1 Experiment 1 Notes
We modified the do_suspend function in ibm405lp_pm.c to use the RTC &
PIT. We then compiled the kernel with our changes and flashed the board. The following tests
in this section were driven by placing the board into suspend mode (mode = clock-suspend) and
then waking it up via the proc interface.

On the first run, we were not able to wake the board up after a suspend. Therefore, we changed
our code to only read registers without writing to any. We also added print statements to output

CSC714 Final Report Page 5 of 9

the value of the PIT before suspend and after wakeup. In these experiments, it looked like the
PIT was incrementing and not acting as expected. Therefore, we changed our code to just read
registers except we did set rtc0_cr0 so that the periodic interrupt rate was 500ms (1111 for last 4
bits). Additionally, we forced the print statements to output all 32 bits from the PIT.

When executed, the PIT decremented by 1440 which is not what we expected. Since it was 46
seconds, we had expected the PIT to only decrement by around 92 (we expected it to decrement
once every 500 milliseconds).

Analysis: It seems that setting the periodic interrupt for the RTC does nothing - in suspend mode
it does not set the RTC to drive the PIT.

Next we changed our code to write 0xFFFFFFFF to the 32 bit PIT and ran it again. The results
are presented in Table 4. Before writing the PIT with the value 0xFFFFFFFF, what we were
reading did not make sense. So, our conclusion is that maybe the PIT was not enabled.
Additionally, since regardless of how long the board is suspended the decrement is the same, it
looks like the PIT is not being decremented while it is actually suspended. We think this is
because the clock that is driving the PIT is not available during suspend.

Table 4: Measured PIT decrements (from right before actual suspend and right after
wakeup) without changing the clock driving the PIT

Run Seconds
suspended

Cycles PIT
decremented

1 30 19872
2 6 19871
3 48 19870
4 120 19870

Our next step was to go back and see if we can get the RTC to drive the PIT and still be able to
wakeup. When we initially ran our code that set the RTC to drive the PIT, it was not able to
wake-up. Therefore, we changed the order of configuring the registers so that we setup the RTC
as we would like it and then changed the clock (in the CPC0_CR1 register) that is driving the
PIT. We also ensured the PIT was read at these times: right before suspend, right after wakeup,
and after finished waking up (although in clock-suspend the last 2 are really executed one after
the other). With this change, we were able to wake-up the board after a suspend. The results are
presented in Table 5.

Table 5: Measured PIT decrements (from right before actual suspend and right after
wakeup) with RTC driving the PIT
Run Seconds

suspended
Cycles PIT

decremented
1 30 3452
2 36 3489

CSC714 Final Report Page 6 of 9

Note: We noted that a call is being made that delays the do_suspend method for 5 clock cycles.
We added another print statement to print PIT right after delay call (call that delays for 5 clock
cycles).

We then searched through the code to determine if the PIT is being manipulated in any way
during a suspend. We found in ibm405lp_pmasm.S , where the PIT is being restored if auto-
reload was not enabled. To see if this restore was being executed, we entered a print command to
print out the TCR (we wanted to check bit 9 to see if it was set to auto-reload or not). The value
of the TCR = 0x04400000, therefore it should not be restored during a wakeup.

Analysis:
It seems that the PIT is not available during suspend but we need to double check our register
settings to ensure we are doing everything correctly and additionally to further check into the
kernel code to ensure they are not disabling the PIT.

Other options may be:
Even if the PIT is not decremented during the sleep, it is decremented during the wakeup so we
can place the code that measures the PIT to read immediately after wakeup and again after
finished wakeup(after restoring states). This option may cause the measured overhead to lose
some accuracy, but it will be more accurate than the 1-second RTC reading. But for this to work,
we need to find out the frequency at which the PIT is decremented.

As a note, in these experiments, we are not able to get back the console (we were using minicom)
after the board wakes up. Instead, we the board had to be rebooted.

4.2 Experiment 2 Notes
Based on previous experiments from the week before, we were able to change the clock that
drove the PIT timer to the RTC. Starting from there, the first thing we want to do is to ensure that
the PIT reading is as expected based on the frequency we set. In order to do this, we changed
RTC0_CR0 so that we use a 4.2MHz clock frequency and set periodic interrupt to all zeroes to
ensure this setting does not skew what we expect. We then changed the do_suspend to not
actually suspend by commenting out the block of code that does this. We then inserted in its
place code to sleep for a specified amount of time and then we will see if the PIT decrements by
the expected amount during the sleep time.
The method we used is udelay(int microseconds). The results are presented in Table 6.

Table 6: Measured PIT decrements (with printk included in overhead) with RTC driving
the PIT
Run Microseconds

suspended
Cycles PIT

decremented
1 1 3274
2 10 3284
3 500 526731

CSC714 Final Report Page 7 of 9

At this point, we noticed that our printk was between the first read of PIT and the second read.
This means that our results included the overhead to execute this printk command. We moved
the printk to after the second read so that the read of PITS was back to back. We then executed
again. The results are presented in Table 7.

Table 7: Measured PIT decrements (with printk removed from overhead) with RTC
driving the PIT
Run Microseconds

suspended
Cycles PIT

decremented
1 0 0
2 1 1
3 10 11
4 20 21
5 500 524
6 1000 1047
7 5000 5234

Notes:
1. This seems to be following 1.048576 (~1.5) MHz setting and not 4.2MHz.
2. There does seem to be some error coming from somewhere. We think this is actually an error

in the udelay timer.

We then commented out all the code that modified the RTC0_CR0 register since it doesn't seem
to be changing the frequency. We will use the 1.05 MHz frequency so we do not need to set this
anyway. We ran another test just to make sure that it is still running at 1.05 MHz and the
removal of this code didn't change anything. It ran as expected.

Just to see if mdelay reduces error, we will try mdelay(int milliseconds):
5 milliseconds = 5234 cycles decremented in PIT
This didn t seem to affect the results which is not surprising.

4.3 Experiment 3 Notes
Now that we have set the RTC to drive the PIT and determined the frequency of the RTC
(1.05MHz), we added back the suspend code and removed all of the sleep calls. We then placed
the first PIT read as the first call after wakeup initiated and the second PIT read after wakeup
activity completed. The results are presented in Table 8.

Table 8: Measured PIT decrements (wake-up overhead) for various suspend modes
Run Mode Cycles PIT decremented

(wake-up overhead)
1 Clock-suspend 0
2 Suspend (via

U63 button)
77

3 Suspend (via
U63 button)

79

4 Suspend (via
proc interface)

77

CSC714 Final Report Page 8 of 9

4.4 Experiment 4 Notes
Before continuing further, we moved the initialization of the PIT back to right before we
suspend. Although the PIT is not available during the suspend, we think that this will provide
better accuracy. Using suspend mode, we ran a few tests varying the amount of time we were
suspended. In all cases, the PIT was about the same but was not a value that was expected. It
appears that the PIT is overwritten during the suspend, therefore we removed this alteration.

We then changed our code to measure both the suspend overhead and the wakeup overhead. This
was done by initializing the PIT to 0xFFFFFFFF upon entering the do_suspend method and then
reading it right before the actual suspend.
After the wakeup, we immediately set the PIT to 0xFFFFFFFF and then read it again after the
wakeup has finished. We also added code to calculate the suspend overhead and the wake-up
overhead and output them in the number of cycles this is just subtracting the read PIT value
from the 0xFFFFFFFF initialized value. These results are detailed in the Results section.

Additionally, we tried 'standby' mode via the proc interface, but it would never wake-up. To
ensure that our code did not affect how this is not waking-up, we reverted to the original kernel
without our code and tried to set the pm_alarm to wakeup after suspending in standby mode.
This still did not work. Tried with the U63 button as well but still did not work.

4.5 Experiment 5 Notes
We integrated a sleep algorithm with a simulated real-time EDF scheduler. We modified code
from hw3 and used the following algorithm. When an idle task is detected, we calculated how
much idle time we would have. If more than the overhead associated with a suspend, we will
enter the suspend mode, else if more than the overhead associated with a clock-suspend, we will
enter the clock-suspend mode, else we would not enter any sleep mode. This algorithm only
applies to periodic tasks since with aperiodic tasks, we would not be able to determine when the
next task will get scheduled. The source code and outputs from the program are attached with
our report.

5 Future work
Future work would include modifying an existing real-time scheduler to use a sleep mode and
port our simulated algorithm to execute on the 405LP platform. However, the current hardware
has a limitation in terms of the granularity that can be specified for wakeups. Another direction
for future work would be to extend DVS schedulers that use synchronous voltage switching.
Since no instructions are executed during this time, it may be beneficial to sleep while waiting
for the switch to complete. The logic to implement this would include estimating the time to
switch frequencies and then setting the wake-up alarm based on this estimation. Then after
initiating the voltage change, the system can enter sleep mode. Upon wake-up, the frequency has
already been switched and the system can continue processing tasks. In order for this to be
possible, we must be able to set the alarm in increments less than a second, preferably
microseconds.

CSC714 Final Report Page 9 of 9

6 References
1. "Feedback EDF Scheduling Exploiting Hardware-Assisted Asynchronous Dynamic Voltage

Scaling" by Y. Zhu and F. Mueller in ACM SIGPLAN Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES'05), Jun 2005, pages 203-212.

2. H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware scheduling for periodic
real-time tasks. IEEE Trans. Comput., 53(5):584 600, 2004.

3. B. Brock and K. Rajamani. Dynamic power management for embedded systems. In IEEE
International SOC Conference, Sept. 2003.

4. A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving feedback edf scheduling for
embedded systems with realtime constraints. In ACM SIGPLAN Joint Conference
Languages, Compilers, and Tools for Embedded Systems (LCTES 02) and Software and
Compilers for Embedded Systems (SCOPES 02), pages 213-222, June 2002.

5. IBM and MontaVisa Software. Dynamic power management for embedded systems. white
paper.

6. K. Nowka, G. Carpenter, and B. Brock. The design and application of the powerpc 405lp
energy-ef_cient system on chip. IBM Journal of Research and Development, 47(5/6),
September/November 2003.

7. Y. Zhu and F. Mueller. Feedback edf scheduling exploiting dynamic voltage scaling. In IEEE
Real-Time Embedded Technology and Applications Symposium, pages 84.93, May 2004.

8. P. Pillai and K. Shin. Real-time dynamic voltage scaling for low-power embedded operating
systems. In Symposium on Operating Systems Principles, 2001. K. Govil, E. Chan, and
H.Wasserman. Comparing algorithms for dynamic speed-setting of a low-power cpu. In 1st
Int l Conference on Mobile Computing and Networking, Nov 1995.

9. R. Minerick, V. W. Freeh, and P. M. Kogge. Dynamic power management using feedback. In
Proceedings of Workshop on Compilers and Operating Systems for Low Power, 2002.

10. PowerPC 405LP user manual.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

