I mplementation of Automated L oop-bound Analysisfor Static Timing
Analysis Framewor k

Balgi V. lyer and Won So
{bviyer, wso} @ncsu.edu

http://www4.ncsu.edu/~wso/csc714

Fall 2005 CSC714 Project Proposal

1. Introduction

Many existing timing analyzers require that user specify the number of iterations for each loop in
the program [Healy98]. The bounds of every loop must be specifically provided by the user. This
can give room too many possible errors. For example, the user might have modified the code and
have forgotten to modify the annotations. Errors in these annotations can drastically affect the
Worst Case Execution Time (WCET) or the Best Case Execution Time (BCET). Compilers
today can implement many optimizations that are not implemented before. For example,
compilers can software pipeline loops, which can affect the given annotations.

It would be very beneficia if the compiler analyze the optimized code during compile time and
provide the appropriate annotations about |oop bounds, induction variables and so forth. Some
timing analysis tools have the capability to perform these automations [Byhlin05]. However, the
available timing analysis framework does not have the ability to extract this information from the
given code.

The main purpose of thiswork is to incorporate this feature in our timing analysis system. We
propose to analyze loops in the code and let the compiler provide the appropriate annotations.
These loop bounds are passed to the timing anal yzer along with the user’s annotations.

In the next section, we explain the goals. Section 3 describes different steps necessary to
complete the specific project goals.

2. Project Goals

These are the major milestones we propose to do:

We propose to find the loop bound for single-entry, single-exit loops (excluding the back-
edge) with one induction variable, which only determines the loop exit condition. For the
rest of this document, we call this type of loops, “simple loops”.

If time permits, we plan to extend this work for more complicated loops such as:
a. Loopswith multiple induction variables.
b. Loopswith multiple exits [Healy98].
c. Conditionally executed inner loops.

mailto:@ncsu.edu
http://www4.ncsu.edu/~wso/csc714

3. Project Plan

The steps to complete this project are as follows:

1) Survey the existing static-timing analysis framework to find the implemented
functionality that could aid this project such as control flow graph (CFG) construction. At
this point, we are planning to exploit optimizing backend compiler framework ‘opt’
which construct useful set of information such as CFG from Sparc assembly code.
Therefore, our first job isto modify thistool to work with PISA assembly code.

2) Set up an agorithm to find the loop-bound of simple loops. For this we maybe have to
reference the existing algorithms and implementations such as [Ermedahl 97] and V PO.

3) Implementation of these algorithms. This step may involve detection of loops, induction
variables and loop exit conditions.

4) If time permits, we will try to implement support for complex loops described in step 2 in
section 2.

5) Find appropriate benchmarks to evaluate our optimizations on the tools and compare the
results with the base system.

4. Disclaimer

This paper and associated software changes are intended for infor mational pur poses only.
Therefore, any use of the information presented in this student work is at your own risk. Balgji
V. lyer, and Won So provide no warranties of any kind surrounding the use of this material.

5. References

[Byhlin05] D. Byhlin, A. Ermedahl, J. Gustafsson, B. Lisper. "Applying Static WCET
Analysis to Automotive Communication Software,” ECRTS’05.

[Healy98] C. Healy, M. Sodin, V. Rustagi, D. Walley, “Bound loop iterations for Timing
Analysis,” RTAS 98

[Ermedahl97] A. Ermedahl and J. Gustafsson “Deriving Annotations for Tight cal culation of
Execution-Time”, Proceedings of the European Conference on Parallel
Processing, 1994

