I mplementation of Automated L oop-bound Analysisfor Static Timing
Analysis Framewor k

Balgi V. lyer and Won So
{bviyer, wso} @ncsu.edu

http://www4.ncsu.edu/~wso/csc714

Fall 2005 CSC714 Project Progress Report
31 October 2005

1. Work Completed

1) Set up an environment (Mainly by Won So)

After surveying existing tools, we have decided to work on existing compiler backend ‘opt’,
which obtained from Dr. Mueller. Originaly it works for Sparc ISA. It has the functionalities of
constructing control flow graph (CFG) and detecting loops from CFG. Also the programis
scalable to add or remove existing analysis and optimization paths. We modified ‘opt’ so that it
only enables CFG construction (function: setupcontrolflow) and loop detection (function:
findloops). Appropriate changes were applied to opt.c and Makefile. Additionally, we set up a
CV S server to manage the source code of ‘opt’. We also installed SimpleScalar to our Linux
machine.

2) Port opt to PISA (Mainly by Won So)

Since existing timing analysis framework uses PISA assembly, we began to modify ‘opt’
program to accept PISA assembly and process PISA instructions. Reading an assembly fileis
done by the function (readfunc() inio.c) and it was modified so that it could process PISA
assembly. The structure for defining instruction types (insttypesinio.c) was also redefined for
PISA instructions. The function which constructs CFG (setupcontrolflow in flow.c) is modified
because of the differences in branch instruction formats. Besides, other miscellaneous functions
for output (E.g. dumpblk inio.c) were also modified to generate valid PISA assembly as an
output. The function which sets bit vector for uses and set (setsuses in vars.c) is also dependent
on the instruction format and it must be modified if it is ever used. However, we did not modify
this function because we do not need bit vectors.

3) Setting up a method to find loop bounds for simple loops (Mainly by
Balaji V. lyer)

Please see section 4 for the pseudo code for detecting loop bounds.

mailto:@ncsu.edu
http://www4.ncsu.edu/~wso/csc714

4) Implementation of simple method (Mainly by Balaji V. lyer)

In order to understand the code generation for loops, we analyzed the GCC source code
available in the SimpleScalar locker. The Opt framework aready finds all the loops and puts
themin asingly linked list. We traverse through the linked list for each available block in the
loop and the block whose successors are not in the loop is the root node (for ssmple loops). This
node is analyzed to find the loop bound. This block also holds the loop induction variable (or the
location in the stack where thisinformation is stored).

Second, we have to find the loop increment value. If the loop induction variableis stored in a
register, then we find a self destructive instruction whose destination register is the loop-
induction register. Then we have our increment value.

If the loop induction variable is stored in the stack, then we find all the loads that load this value
into aregister, and find all the instruction that are dependent to that register, and find the
constant computation done by these registers. The sum of all these computation will give an
approximate value for the increment value.

We currently have an algorithm that catches the loop-exit-node of the loop. We are also able to

find the loop bounds. We are currently working on implementing the function to calculate the
loop increment value.

2. Open Issues

None so far.

3. Plans

1) Finish the method for simple loops mentioned in 3) and 4) of section 1. (By Balgji V. lyer)

2) Test implemented method with various inputs derived from benchmarks. (By Won So and
Bagji V. lyer)

3) Extend to loops where the loop bound is derived from a global variable. (By Won So and
Balgi V. lyer)

4. Pseudo Code

procedure find_sinple_| oop_bounds

find_all _|oops()

for (ii =first_loop; ii !'=1last_loop =ii = next_loop(ii))
do

for-each block(jj) in loop i

do

if (the successors of jj is not a block inii)
/* means we have reached the root of the |oop */
find_l oop_bound(jj);
find_| oop_increnent();
fi
done
done
end- procedur e

procedure find_| oop_bound(bl ock jj)
for-each instructions(kk) in jj

do
if (kk == conpare-instruction)
find the two conparision val ues.
if (one of the two values is not a constant)
/* this isnot a sinple |oop by our definition */
exit
el se
return the constant /* this is the | oop bound */
mar k the non-constant value as the induction variable.
fi
fi
done

end- procedur e

procedure find_|l oop_increnent (loop X, |oop_variable, |oop_upperbound)

i ncrenent _val ue = 0;
if (loop_variable == register)
for-each bl ocks (BB) in X
for-each instructions (11) in block BB

if ((Il == self_destructive) &&
(destination_register(ll) == |loop_variable.register))
if (the increment/decrenment val ue == constant)
i ncrenent _val ue : = Loop_Upper_Bound/i mredi ate_val ue(Il1);
fi
f
done
done
fi
vari abl e | ook-for-stores := 0;

if (loop_variable == stack_val ue)
for-each bl ocks (BB) in X
for-each instructions (11) in block BB
if ((look-for-stores == 0) &&

(I'l.type == load_instruction) &&
(I'l.source_register == stack/frane pointer) &&
(I'l.offset == 1 oop_variable.offset))

| ook-for-stores = 1;
fi

if ((look-for-stores == 1) &&
(I'l.type !'= store_instruction) &&

(I'l == inmredi ate instruction))
if (Il is dependent on the |oop variable)
| oop_i ncrement = | oop_upperbound/i nmedi ate_val ue(l1);

f
fi
if ((look-for-stores == 1) &&
(I'l.type == store_instruction))
| ook-for-stores =1
fi

done
done
fi
return | oop_i ncrenent;
end- procedur e

5. Disclaimer

This paper and associated software changes are intended for infor mational purposes only.
Therefore, any use of the information presented in this student work is at your own risk. Balgji
V. lyer, and Won So provide no warranties of any kind surrounding the use of this material.

