I mplementation of Automated L oop-bound Analysisfor Static Timing
Analysis Framewor k

Balgi V. lyer and Won So
{bviyer, wso} @ncsu.edu

http://www4.ncsu.edu/~wso/csc714

Fall 2005 CSC714 Project Progress Report 3
15 November 2005

1. Work Completed

1) Set up an environment
Described in the previous report

2) Port opt to PISA
Described in the previous report

3) Setting up a method to find loop bounds for simple loops
Described in the previous report

4) Base Implementation: Loop bound determined by constant

We limit our scope of work to ssmple loops, single-entry and single-exit loops.
Basic loop bound detection algorithm is described by pseudo-code in the previous report.
Summarized steps follow:

1) Detect aloop. Thisis done using the findloops function already implemented in the opt
compiler.

2) Detect aloop-exit block. Thisis done by looking at all the successors of each block, and the
block whose successor is not part of the loop is determined to the loop-exit block.

3) Detect aregister or stack offset which isused as an induction variable. Thisvalueisthen
stored in loopnodea&loop var_addr. (Please note that the starting point of “&” indicates a
structure name and the end point of the arrow indicates afield in the structure).

4) Storeinitial and final values of the loops and the type of valuesit is storing. They are recorded
in loopnodeacompare_type, loopnodeafinal _value, loopnodeafinal_val type and

mailto:@ncsu.edu
http://www4.ncsu.edu/~wso/csc714

loopnodeafinal_val_reg, respectively. Explanation of theinit value types are given in Table 1.
The exact same criterion is applied for final value field.

Value Type Explanation init val init val reg

LOOP_CONSTANT | Setting theinit_val_typeto | Constant Invalid Value
thistypeindicatesthat the | Value that
initial value provided in the | starts (or stop
code is aconstant. The for final_val)
initial valueis setin the the loop
init_val field of the

loopnode structure.
LOOP_GLOBAL Setting theinit_val_typeto | Invalid Value | Global value name (e.g.
thistype indicates that the ‘X”)

initial value provided in
this code isaglobal value.
The global variable nameis
stored intheinit_val_reg
field of the loopnode

structure.

LOOP_REGISTER | Thismeanstheinitia value | Invalid Value | Register name (E.g. $5)
is derived from alocal or stack location (E.g.
valuein the function. The 16($fp))

local register number (or
stack offset) is stored in the
init_val_reg field of the
loopnode structure.

Table 1: Explanation of Loop Value Types

5) Detect aloop increment value and increment operator from aloop body. These results are
stored in loopnodeacompare_type and loopnodeaxinc_type. Theinc_type field holds the name
of the instruction that is doing the modification. The compare type holds the type of comparison
done by the loop exit block. The possible values for compare type are: EQ (Equal to), NE (Not
Equal), GT (Greater Than), GE (Greater than or Equal to), LE (Less than or Equal to), LT (Less
Than). For this project, we limit our search to adds, subtracts, multiply, divide, shifts and rotates.

6) For loops whose initial or fina values are not constant value, we denote them appropriately by
setting loopnodea<init/final>_val_typeto LOOP_GLOBAL or LOOP REGISTER. The only
differenceisthat, in the former case, the field loopnodea<init/final>_val reg holds avariable
instead of aregister number. Thisinformation is explained in detail in Table 1.

7) After we obtain avalid fina and init value (thisis true only when both the fields have the type
LOOP_CONSTANT), we compute the number of times we execute the |oop.

8) Some loops whose final valueis not bound by a constant, there can be a situation where the
fina value is modified inside the loop. This kind of loop is unpredictable. We detect this kind of
functions. The result whether the loop can be predictable or not isindicated in the

loopnodeapredictable field. Theinitial values are not checked, since they are not a victim to
this problem.

5) Implementation Extension: Loop bound determined by global or local
variable

We extended our method to compute loop bounds determined by global variables. We added the
function (readinglobals) inio.c for reading integer global variables from a assembly file and
construct a symbol table storing a global variable name and aiinitial value asalinked list (struct
globalinfo* globalsinio.c) However, we have concluded that we can not use the initial value of
aglobal variable for loop bound analysis because the global value can be modified anywherein
the other functions, even located in adifferent file. Therefore, rather than specifying afixed loop
bounds we specify the global value name for parametric analysis. For local variables, we can
specify loop bounds of those as aregister name or stack location. Furthermore, we are trying to
specify it asalocal variable name instead of register value.

For a non-rectangular loop, which inner loop bound is determined by an outer loop induction
variable; we check it is non-rectangular loop. This information isindicated in
loopnodearectangul ar field.

6) Generation of .loop file

The input file for pcompiler is.loop file. For rectangular loops which loop bounds are
determined by constants, we will provide the loop bounds. If the loop bounds are unpredictable
then we indicate the appropriate field as “?” inside the .1oop file so that the user can specify that
value manually. For local or global variables, we are trying to use name of the variable. For non-
rectangular loops, there is aformat to be specified to .loop file. Every single piece of information
needed is stored in loopnode structure so avalid .loop file will be generated.

2. Open Issues

None so far.

3. Plans

1) Finish the method (By Won So and Balgji V. lyer)

2) Generate valid .loop file and print miscellaneous output for the user (By Won So and Balgji V.
lyer)

3) Test implemented method with various inputs derived from benchmarks. (By Won So and
Balgi V. lyer)

4. Pseudo Code
The code isidentical as submitted in the previous report.
5. Disclaimer

This paper and associated software changes are intended for infor mational purposes only.
Therefore, any use of the information presented in this student work is at your own risk. Balgji
V. lyer, and Won So provide no warranties of any kind surrounding the use of this material.

