| mplementation of Automated L oop-bound Analysis
for Static Timing Analysis Framework

Balgi V. lyer and Won So
{ bviyer, wso} @ncsu.edu
http://www4.ncsu.edu/~wso/csc714

Fall 2005 CSC714 Project
Final Report
30 November 2005

1. Introduction

Many existing timing analyzers require that user specify the number of iterations for each loop in
the program [Heal y98]. The bounds of every loop must be specifically provided by the user. This
can give room too many possible errors. For example, the user might have modified the code and
have forgotten to modify the annotations. Errors in these annotations can drastically affect the
Worst Case Execution Time (WCET) or the Best Case Execution Time (BCET). Compilers
today can implement many optimizations that are not implemented before. For example,
compilers can software pipeline loops, which can affect the given annotations.

It would be very beneficia if the compiler analyze the optimized code during compile time and
provide the appropriate annotations about |oop bounds, induction variables and so forth. Some
timing analysis tools have the capability to perform these automations [Byhlin05]. However, the
available timing analysis framework does not have the ability to extract this information from the
given code.

The main purpose of thiswork is to incorporate this feature in our timing analysis system. We
propose to analyze loops in the code and let the compiler provide the appropriate annotations
[Ermedahl 97]. These loop bounds are passed to the timing analyzer along with the user’s
annotations.

In the next section, we explain the goals of this project. Section 3 presents implementation

details. Section 4 describes experimental results. Section 5 concludes the report and discusses
some future work.

2. Project Goals

These are the major goals we propose to do:

We propose to find the loop bounds for single-entry, single-exit loops with one induction
variable, which only determines the loop exit condition. For the rest of this document, we
call thistype of loops, “simple loops”.

mailto:@ncsu.edu
http://www4.ncsu.edu/~wso/csc714

We incorporate this feature in the current existing framework. The current tool chain does
not support automatic loop-bound analysis hence requires manual specification of loop
bounds for al loops by .loop file asit is shown in Figure 1. Our tool ‘loopbound” will
automatically generate .|oop file from the assembly file as shown in Figure 2.

gce-PISA

Foo.c 20 Fons—— pcompiler _ Timing Analyzer

Tools

Foo.loop Manually written

Figure 1 Current tool chain requires manual specification of loop bounds.

gcc-PISA X - . Timing Analyzer
Foo.c FD::;,L:S pcompiler Tools
s
\\\
foopbound

"~
* Foo.loop
= Automatically generated

Figure 2 Our tool 'loopbound’ will automatically generate the .loop file.

3. Implementation Details

To implement automated |oop-bound analysis, we have decided to start from optimization back-
end compiler ‘opt” which supports CFG construction and loop detection from SPARC assembly
code.

Implementation is divided into three parts:

Front-end: The ‘opt” compiler takes SPARC assembly as an input file while the timing
analysistool uses PISA, ISA for Simplescalar [Burger97]. Therefore, the front-end must
be modified to process a PISA assembly file.

Loop-bound analysis: Loop-bound analysis algorithm must be implemented as one of the
compiler phases. This phase is added after loop detection phase.

Back-end: After performing loop-bound analysis, the appropriate .1oop file must be
generated.

Each subsection below describes each part.

3.1 Front-end

3.1.1 Basic structure

The ‘opt’ program is scalable to add or remove existing analysis and optimization phases. We
modified ‘opt” so that it only enables CFG construction (function: setupcontrolflow) and loop
detection (function: findloops) and added one phase ‘loop_bound_analysis’ after ‘findloops’. We
used our “findloops’ function instead of the one provided because the order of linked list ‘loops’
constructed by the original ‘findloops’ is not easy to handle. Our ‘findloops’ function constructs
in-order linked list asit appears in the assembly code.

3.1.2 PISA assembly support

Since existing timing analysis framework uses PISA assembly, we have modified ‘opt” program
to accept PISA assembly and process PISA instructions. Reading an assembly file is done by the
function (readfunc () inio.c) and it was modified so that it could process PISA assembly. The
structure for defining instruction types (insttypesin io.c) was also redefined for PISA
instructions.

The function which constructs CFG (setupcontrolflow in flow.c) is modified because of the
differences in branch instruction formats. Besides, other miscellaneous functions for output (E.g.
dumpblk inio.c) were also modified to generate valid PISA assembly as an output. The function
which sets bit vector for uses and set (setsusesin vars.c) is also dependent on the instruction
format and it must be modified if it is ever used. However, we did not modify this function but
disable this function because we do not need bit vectors.

3.1.3 Global and local symbol tables

We added symbol table support for both global and local variablesin order to use those for
parametric analysis. We added the function (readinglobals) inio.c for reading integer global
variables from a assembly file and construct a symbol table storing a global variable name and a
initial value as alinked list (struct globalinfo* globalsinio.c) If the source code is compiled with
‘-g’ option, it also constructs alinked list of locals. (struct localinfo* localsinio.c) The ‘value’
field in ‘localinfo’ stores either stack offset (if it is compiled with —O0) or register number (with
higher optimizations).

Despite these efforts, we have decided not to use symbols for parametric analysis. For global
variables, it is hard to match aregister with a global variable symbol if the source codeis
compiled with higher optimizations. With higher optimizations, aglobal valueisloaded once
into aregister and used as aregister at the rest of the code. In this case, it is hard to track which
global symbol corresponds to a specific register. For local variables, it isaso hard to match a
register with alocal variable symbol with higher optimizations because a register is reused.

3.2 Loop-bound analysis

In this section, we discuss how we find and analyze loops in the Opt Compiler. We start this
section by explaining the background work that was done to perform this loop-bound analysis.
Section 3.2.2 explains detection of loops. We detail finding the initial and final valuesin section
3.2.3. Discovery of induction variables are al'so explained in section 3.2.3. In section 3.2.4, we
show how we find the comparison type and the increment value. We explain how we determine
nested loops in section 3.2.5. We conclude this section by explaining how we determineif a
certain loop is predictable or not.

3.2.1 Preliminary Work and Assumptions.

In order to accurately access the code, we analyzed the gcc-2.6.3 compiler and the PISA (or
simplescalar) machine description that generates code for the PISA architecture. The only
compare instruction (for fixed point) we encountered in the ssmplescalar toolset was SLT (Set
Less Than), SLTI (SLT Immediate), SLTU (SLT Unsigned) and SLTIU (SLTI Unsigned)
[Burger97]. Other than this, we also found many predicated branches such as: beq, bne, blez,
bgez, bgtz and bltz. Our first task was to see how these instructions were emitted in the GCC
machine description. In this section we try to explain briefly how branches are emitted by the
GCC compiler.

(define_ expand "cmpsi"
[{set (ccO)
(compare:CC (match_operand:SI 0 "register_operand" "")
(match_operand:8I 1 "arith_cperand" "")))]

{

if {operands[0]) /* avold unused code message */

branch_emp[0] = operands[0];
branch cmp[l] = operands[1];
branch type = CMP_8I;
DONE;
¥
[

Figure 3: Machine Description to Handle “CM PSI” instruction.

Figure 3 explains the output of compare (single integer) instruction. When a compare instruction
isto be output by the compiler, the two variables that are being compared to are saved in an array
(branch_cmp). The type of comparison necessary is aso stored in the variable branch_type.

switch (branch_type)
i

goto

case B
reg = gen int relaticnal (test_code, (rtx)0, cmpl, cmpl, sinvert);
if (reg != (rtx)0)

1

cmpl = reg;
cmpl = const0_rtx;
test_code = NE;

il

/* Make sure not non-zerc constant if ==/1= #/
else if (GET_CODE (cmpl) == CONST_INT && INTVAL (cmpl) != 0)

Figure 4: Emitting the Relational operation

In the file ss.c, there exists a function called “gen_conditional_branch” which reads these values
and then creates arelational RTL (SLT). Figure 4 displays the code (shaded part) for this step.
Thisinstruction emitsa SLT and an appropriate branch instruction. After these two instructions
are emitted, the compiler emits a jump instruction that is used to jump into the loop block (thisis
the code that is executed inside the loop.

Leisll — PG L LA,

emit_jump_insn (gen_rtx (SET, ¥OIDmode,
po_rtz,
gen_rtx (IF_THEN ELSE, YOIDmode,
gen_rtx (test_code, mode, cmpl, cmpl),
labeld,
label2))y;:[]

return;

Figure5: Function responsible for outputting the Jump Instruction.

Figure 5 explains the function used (inside the “gen_conditiona_branch”) function that is used
to emit the jump instruction. In Figure 6(a) and (b), we show a simple for loop along with its
tranglated assembly code respectively.

(a)
int main(woid)
{
int =0;
int = 5;

for (i1 = 0; ii « 10; ii++)
13=5;

return 0;

(b)
SLZ:
1w $2,1605fp)
s1t §3, 52,10 % <== COMPARE INSTRUCTION
bna £3, 40, L5 # <== BRANCH OUT WHEN THE CONDITION IS NOT MET
3 4L3 $ == THE LOOP

Figure 6: (a) Example C Code and (b) Translated PI SA Assembly code (just part of the for-loop) along with
our added annotationsfor clarity.

Using this understanding of the GCC compiler, we began to create a plan of action to complete
this project. In order to make this project feasible for the time allotted, we have made the
following assumptions that we feel are redlistic:

1) Thisimplementation of loop bound analysis assumes that the code is generated using
gce-2.6.3 with the machine description provided in the simplescalar website.

2) We currently handle only single entry and single exit loops. The only exception to thisis
aloop that contains function calls. However, our algorithm can be extended to multiple
exit loops with minimal modification.

3) For loop increments, we only support the following methods: add, subtract, multiply,
divide, and shifts.

4) We also assume that multiple increments of loop induction variable, with different
arithmetic are not present.

5) We also assume that the for-loop does not contain an infinite loop scenario.

3.2.2 Detecting a Loop

The loops are detected using the findloops method in the Opt Compiler. The loops are then saved
in asingly-linked-list structure called loopnode. The head of the loop is stored in avariable
called “loops.” Each element in the linked list holds one loop. The pointersto al the basic-blocks
in the loop are stored under another singly linked list called “blocks.”

The singly-linked-list loopnode holds all of the results from our analysis. For the rest of the
document, when we mention a member name, we imply that the member belong to this data
structure. In further sections we describe how we populate our resultsin the linked list.

3.2.3 Finding the Initial, Final bound, and induction variable values of a
Loop

In order to detect these values, we have to first find the root node of the loop. Figure 6(b) isan
example of the root node. For clarity, we have shown the control flow graph of the code depicted
in figure 6(a) and marked the root node in Figure 7.

UHMNAMED
BLOCK

Figure 7: Control flow graph of the Example code given in Figure 6(a).

ROGT
HODE

It is easy to see that the loop nodes for this program are $L.2, $L5 and $L4. To detect the root
node in the graph, we go through every block in the loop and find the block whose successors are
not part of the loop. From figure 7, it is very obvious that the only block that fallsinto this
category is $L2. In this basic block, we search for the compare instruction.

In our analysis of both GCC and our test cases, we find that there are mainly two cases that are
possible. First, the compiler emitsan SLT instruction and a“BEQ” or “BNE” instruction.
Second, it doesn’t emit an SLT instruction, but emitsa BEQZ, BNEZ, BLTZ, BGEZ, BGTZ or
BLEZ instructions.

In the first case, the first source register hold the induction variable (or the induction variable
value) and the second source variable holds the value of the final bound. Thisis stored under the
member name, “final_val.” If thisisvalue is a constant value then we store the “final_val_type”
as LOOP_CONSTANT. If thisvalue is aregister (or stack location) then we call this variable
LOOP_REGISTER.

When we catch the induction variable, we search to seeif thisis stored as a stack value (spill
code) or a dedicated register. If the induction variable is saved in a stack location, the compiler
will load this value into atemporary register (please see first instruction in figure 6(b)). We
traverse the rest of the instructions (backwards) in the basic block and try to see if any loads are
done into the induction variable we caught. If we find one, then we know that the induction
variableisin the stack and we save this location.

If the induction variable is aregister value, we examine instructions inside the predecessors of
the root-node (backwards). If we encounter aload immediate instruction whose destination is the
induction variable, then we know theinitial value. We save this value under the member name
“init_val” and the type under “init_val_type” as LOOP_CONSTANT. On our quest to the load
immediate instruction, if we find any arithmetic done to the induction variable, we store the
register the induction variable is dependent upon (asinit_val_reg) and store the type as
LOOP_REGISTER.

If the induction variable is a stack |ocation, we do the same analysis as above, but instead of
search for aload immediate, we search for the first store (SW) instruction. If the register that the
store instruction is storing is $0, then we know theinitial valueis 0, and thisis stored in the
appropriate location with the appropriate type mentioned above.

If the store register is not $0, then we mark that register value and traverse up till we find aload
word into that register. We examine al the instructions between this load and store and search
al the instruction that load an immediate value into this marked register. Thisisour initial value.
We save thisimmediate value into init_val and set the init_val_type as LOOP_CONSTANT.

Another possibility isthat the initial-valueis aglobal variable. If thisis so, then the global value
isstored into aregister using a Load instruction. We search for this. If we find such a pattern,
then we store the name of the global value into theinit_val reg location and mark the type as
LOOP_REGISTER.

3.2.4 Finding Comparison Types and Increment values.

In the C code, there are six possible values for comparison: greater than, greater than or equal to,
less than, less than or equal to, equal to and not equal to. Since the only comparison value the
architecture providesislessthan, it was interesting for us how they handled these six cases.

For less than or equal to, they incremented the comparison value by one and branched into the
loop blocksif it waslessthan. The SLT instruction sets its destination register to one if the first
source register isless than the 2™ register (or immediate value). The BNE instruction will
examine the destination register of SLT instruction and branch to the appropriate location if the
register is not zero.

Similarly, greater than or equal to isdone by using a SLT instruction, but branching into the loop
blocks when the destination register of SLT instruction is zero (using BEQ). For greater than

instruction, they are handled the same way as less than or equal to, but as with the greater-than
case, the branching is done when the destination register if SLT is equal to zero.

For the equal-to and not-equal case, the final value is subtracted from the induction variable, and
the branching is doneif the result is zero or non-zero, respectively.

Another case of for-loops occur when we have the final value equal to zero. For this, the
compiler does not insert any SLT instructions. They use the following instructions to compare
with the induction variable:

BEQZ = Branch if Equal to Zero

BLTZ = Branchif Lessthan Zero

BLEZ = Branch if Lessthan or Equal to Zero
BGTZ = Branch if Greater than Zero

BGEZ = Branch if Greater than or Equal to Zero.
BNEZ (or BNE) = Branchif Not Equal to Zero

Sk~ wdhE

The appropriate branch condition is stored in the variable called “compare_type.”

The next task was to find the increment value. For the case where the induction variableisa
dedicated register, we search for a self destructive instruction with the induction variable as the
destination register and we store the immediate value as “inc_value.” The type of operations (or
instruction name) is stored in inc_type.

SLd:

1w $3,16(5fp)
addu 42,5%3,1
mow e £3,52

sw $3,16(5fp)
J §L.2

Figure 8: Incrementing theinduction variable that islocated in a stack

For the case when a stack location is used, we look for the load and store pairs of the address and
we look at instructions between the load and store that writes to the register that is stored in the
memory location of the induction variable.

Figure 8, provides the L4 basic block from the assembly code of Figure 6(a). Recall that the
induction variable is stored in location 16($fp). Please notice that $3 stores its value into the
induction variable. We traverse the instructions backwards till we find aload instruction and we
can easily see that $3 istaking values from $2 and $2 holds the value from the add instruction
above. Right above thisinstruction, $2 is stored with the sum of $3 and 1. $3 holds the previous
value of the induction variable (denoted by the load word instruction). In this example, we store
“addu” into “inc_type”, and 1 into “inc_value.”

3.2.5 Finding Nested Loops and Non-rectangular loops

Figure 9 shows the function we used to check if two blocks are nested or not. Loop A isnot
nested inside Loop B if there existsanodein A that is not contained in B. We use thisto see if
two loops are nested. For rest of this section, we use Loop A to explain the outer loop and Loop
B to explain the inner loop.

int iz _nested(struct loopnode #node, struct loopnode *node2)

i
struct blist *temp_klk = NULL;

for (temp _blk = node->blocks; temp blk != NULL;
temp_blk = temp blk->next)

if (!inblistinodei->blocks, temp_blk->ptr))
i
return FALBSE;
}
}
return TRUE;
}

Figure9: Function to seeif two loops are nested or not.

If Loop B is dependent on the induction variable of Loop A, then we call it a non-rectangular
loop pair. Figure 10 gives a simple example of arectangular and non-rectangular loop.

int main(woid)
{
int ii
int jj

0;
0;

for (i1 = 0; ii < 10; ii++)
{
for (33 = 0; 31 < 10; 33++)
/* Rectangular Loop Pair R/

i

for (i1 = 0; ii < 10; ii++)

{
for (33 = 0; 33 < ii; Ji++)
{

/# Non-rectangular Loop Pair %/

1
1

Figure 10: Examples of Rectangular and Non Rectangular L oops

We determine these loop pairs and mark them appropriately. The type of loop is stored using a
bool value called “rectangular” that is set to TRUE or FAL SE as appropriate. These loop pairs
have a different notation when generating the loop macros compared the rectangular loops.

3.2.4 Predicable Loops

We determineif aloop is predictable or not, if the final bound of the loop is changed inside the
loop. Thisisnot anissueif fina valueis of type LOOP_CONSTANT. Thisis determined by
walking through all the instructions inside aloop and seeing if the register value of the final

10

value is written to by any of the instructions. If so, we set the member name “predictable” to
FALSE in the loopnode structure.

3.3 Back-end

3.3.1 Command-line Interface

The command-line interface is modified to take an assembly file as the first argument. The same
name with .loop extension is automatically created and written as an appropriate format. For
example, the command line “loopbound foo.s” will automatically generate ‘foo.loop’ given
‘foo.s” assembly file.

3.3.2 Debug output

Debug information is printed into stdout. It prints out loop information obtained by the loop-
bound analysis followed by loop number and nested levels. Table 1 summarizesit.

Field name Meanings

predictable 1 = predictable / 0 = non-predictable

rectangul ar 1 = rectangular / 0 = non-rectangular (either inner or outer oop)
Init integer value for constant / $x for register / y($fp) for stack offset
Final integer value for constant / $x for register / y($fp) for stack offset
Bound Actual loop iteration both init and final are constant

Comp_type Compare operator: EQ, NE, GT, LT, GE, LE

inc_type Incremental operator: actual instruction

inc val Incremental value

inc_reg Induction register: $x for register / y($fp) for stack offset

Table 1: Information for each loop shown in debug output

3.3.3 .loop file generation

The .loop fileis the format used for ‘pcompiler’ to specify loop bounds. Mainly there are 3
different types of loops: 1) A loop with fixed number of iterations (5 in this case) is represented
with number of iterations as shown on line 4 in Figure 11(b). 2) A loop with variable number of
iterations is represented with a parameter (.iter2 in this case) as shown on line 6 in Figure 11(b).
3) An outer loop and an inner loop which form non-rectangular loops are represented with a
special format as shown on line 8 and 10 in Figure 11(b).

11

(a) C source code
Mai n() {
int i,j,x=5;
for (i=0; i<5; i++) { /* loop 1: fixed */ }
for (i=0; i<x; i++) { /* loop 2: variable */ }
for (i=0; i<15; i++) /* loop 3: non-rectangul ar outer */
for (j=0; j<i; j++) { /* loop 4: non-rectangular inner */ }

(b) .loop file

b
1
2
3
4:
5:
6 -4 r[11] O r[1] 1 s -2 .iter2 .iter2 -1 -1
7 ! loop 3

8 -4 r[12] 0151 s 1515 -1 -1

9 I loop 4

0 -3 0r[13]+0 154 16 cO c151 -1 -1

10:

Figure 11: Example sourcefile (a) and corresponding .loop file (b)

Because of the reasons mentioned in 3.1.3, we use a variable name ‘.iter<loop_no>’ for
parametric analysis though we initially planned to use real symbol names. For register numbers
for loops, we use increasing numbers stating from r[11] for each loop. For parametric variables,
we use increasing numbers starting from r[1] depending on loop nest levels.

It could generate “Can not analyze: ...” message instead of valid .loop file line for the cases
where current .loop file generation routine (dumploops_dotloop inio.c) can not handle. For
example, the message “Can not analyze: loop init, final both are variables’ is generated when
both init/final value types are variables. However, these limits are not the ones from the loop-
bound analysis algorithm but from the .loop file format. Therefore, we can carefully say that
integration of pcompiler and loopbound can provide more information applicable for the timing
analyzer tools.

4. Experimental Results

In order to test our results, we created about 72 different for-loops. Of these 72 loops, 25 of
them were ssimple loops with both initial and final values are constants. 19 out of 72 were distinct
loops that tested all the possibilities applicable for for-loops. 10 out of the 19 distinct ones were
rectangular and 9 out of 19 were non-rectangular. 5 out of 72 had final values as global values. 5
out of 72 had initial values as global values. Nine out of 72 had multiple nested |oops where
some were non-rectangular. Similarly, nine out of 72 had multiple nested loops with all of them
rectangular. These programs were compiled using —00, -O1 and —O2 optimizations. The loop
files were generated along with debug outputs and they were checked manually for accuracy.

In order to demonstrate that our program is working as proposed, we have written two files:

test mixed.c and test_all_fors.c. These files are representative of the 72 loops. We have also
included a Makefile that will compile the filesusing a PISA compiler, and then run the assembly

12

files through our code when typed “make all test” at the command line. Thiswill output the
debug output along with the loop files.

Our loopbound function is tested using GCC 2.8.1, 2.95.2, 3.2.3, 3.4.2 and 4.0.0. The outputs
seem to match as wanted.

5. Conclusions and Future Work

We created aloop-bound analyzer that analyzes loops in an assembly code for the PISA
architecture and generate the appropriate .|oop files for the loops that are analyzable. This will
greatly help many computer scientist and engineers to automate their timing analysis research in
this architecture, and can greatly help reduce human errors.

For future work, the loop-bound analysis a gorithm can be extended to more complex loops such
as loops with multiple induction variables, loops with multiple exists [Hea y98] and
conditionally executed loops. Asfar asthe tool chain is concerned, the existing tool ‘pcompiler’
and our new tool ‘loopbound’ can be successfully integrated and provide more useful
information to timing analyzer tools.

6. Individual Contributions

Balgji V. lyer was manly responsible for implementing the loop-bound analysis.
(loop_bound_anlaysis.c) Won So was mainly responsible for front-end and back-end
implementation. We both contributed equally in testing and debugging. We believe thiswas a
fair division of labor.

7. References

[ByhlinO5] D. Byhlin, A. Ermedahl, J. Gustafsson, B. Lisper. "Applying Static WCET
Analysis to Automotive Communication Software,” ECRTS’05.

[Healy98] C. Healy, M. Sodin, V. Rustagi, D. Walley, “Bound loop iterations for Timing
Analysis” RTAS 98

[Ermedahl97] A. Ermedahl and J. Gustafsson “Deriving Annotations for Tight cal culation of
Execution-Time”, Proceedings of the European Conference on Parallel
Processing, 1994

[Burger97] D.Burger and T. Austin, “Simplescalar Toolset, Version 2.0,”
www.simplescalar.com, 1997

13

http://www.simplescalar.com

8. Disclaimer

This paper and associated software changes are intended for infor mational purposes only.
Therefore, any use of the information presented in this student work is at your own risk. Balgji
V. lyer and Won So provide no war ranties of any kind surrounding the use of this material.

14

