Task Space Searcher (TSS)

By Tyler Bletsch
For CSC714, Prof. Mueller
28 November 2005

Problem

- We know how to check a task set for schedulability if we know all the parameters, but what if we don't?
- For example, we are designing a real-time system, and...
 - We're at the drawing board
 - Want to know what kind of task sets would be most flexible
 - We have tasks, but timing parameters aren't precisely known
 - How tight do we have to get the upper bound?
 - Current task set isn't feasible, but we can optimize tasks further
 - Which tasks are worth spending manpower on?
 - Which tasks don't significantly affect things?
 - How much better do we have to get to become schedulable?

Approaching the problem

- Allow the user to test sets of values for period, WCET, and deadline
- Each of those variables can be:
 - A simple floating-point number, such as "6.5"
 - A set of numbers, such as "{1, 3, 6.5}"
 - A discrete interval of the form " $[a, b, \delta]$ "
 - The set of numbers from a to b stepping by δ .
 - So "[1, 3, 0.5]" = " $\{1, 1.5, 2, 2.5, 3\}$ "
 - A discrete interval of the form "[a, b]"
 - Just as above, with $\delta=1$

```
{2,5}; [3,4,0.25]; 5

Expands to:

2; 3; 5
2; 3.25; 5
2; 3.5; 5
2; 3.75; 5
2; 4; 5
5; 3; 5
5; 3.25; 5
5; 3.5; 5
5; 3.75; 5
5; 3.75; 5
5; 4; 5
```

Design

- Read a file indicating the tasks (with wildcards) and the tests to run
- Iterate all possible cases, running appropriate analysis on each
 - Cases do not need to be stored in memory, so memory usage grows linearly with number of tasks
 - Time usage may grow exponentially due to combinative effects of wildcards
- Output possibilities:
 - A simple list of schedulable task sets
 - A verbose analysis printout for each task set
 - A machine-readable Comma-Separated Values (CSV) file detailing the results

Usage example

• Input file "test.tss"

```
task [1,15,3];[1,5,0.1] # Add first task, which has wildcards
                 # Add a fixed second task
task 7;2;7
task 11;4;10
               # Add a fixed third task
try DM with PIP # Run the analysis for DM
try EDF with PIP # Run the analysis for EDF
```

Terminal session

```
Task Space Searcher (TSS) by Tyler Bletsch
Usage: tss.pl [-v[#]] [-c<CSVfile>] <TSSFile>
Options:
```

Set verbosity to #, or 1 if no number is specified. Defaults to 0. Key:

Microsoft Excel - out2.csv

Ready

File Edit View Insert Format Tools Data Window Help

G

p[0] | e[0] | D[0] | p[1] | e[1] | D[1] | p[2] | e[2] | D[2] | Algorithm | Priority | PASS?

100% - 10 - % 10 - A -

10 DM

10 DM

10 DM

10 DM

10 DM

PIP

PIP

PIP

PIP PIP

NUM

_ | _ | ×

_ B ×

0

0

0

0

0

0 = Emit successful task sets only

1 = Print TaskSets & analysis result

2 = Print all of 1, and include in-depth calculation details

-c Output results in Comma-Separated Values (CSV) format to <CSVFile>.

-p Just print the cases that would be tested (but don't test them).

```
DM: (13,1,13) (7,2,7) (11,4,10)
DM: (13,1.1,13) (7,2,7) (11,4,10)
DM: (13,1.2,13) (7,2,7) (11,4,10)
EDF: (4,1,4) (7,2,7) (11,4,10)
EDF: (7,1,7) (7,2,7) (11,4,10)
... and so on ...
EDF: (13,3.9,13) (7,2,7) (11,4,10)
EDF: (13,4,13) (7,2,7) (11,4,10)
```

Conclusion & Future Work

- We want to expand schedulability analysis to check a number of task sets
 - We allow task parameters to be sets or intervals
 - Test all task sets in the problem space
- Future directions
 - Apply additional reasoning to rule out task sets without performing analysis on them
 - Add support for parallel execution to combat exponential growth in running times

Any Questions?

My project page is available at: http://www4.ncsu.edu/~tkbletsc/714/project.html