Dynamic Slack Reclamation with
Procrastination Scheduling in Real-
Time Embedded Systems

Paper by Ravindra R. Jejurikar and Rajesh Gupta

Presentation by Tyler Bletsch
NC State University
19 October 2005

Introduction

¢ Must reduce energy usage!

¢ Two ways to save power
— Slowdown (DVS)
* Reduce dynamic power, increase execution time, static power unaffected
— Shutdown
* Turn (almost) all power off for a given period of time
« We can use task procrastination to glob together slack times
» Static power usage is growing
— This is due to increasing leakage current in newer & smaller
processors, so slowdown isn't enough...
« Paper’s goal:
— Combine procrastination scheduling with dynamic slowdown
techniques

System Model

e Tasks 1; of form {T}, D,, C;}
— T, =Period, D, = Relative deadline, C; = WCET
¢ Slowdown
— 1 =DVS slowdown factor in [0,1]
— 1; = Static slowdown of task i
— N = Slowdown with least energy per clock cycle
¢ The minimum value of n worth caring about
¢ Dynamic Slack Reclamation’s two parts:
— Slack Reclamation Algorithm
« Generic mechanism for all procrastination/slowdown hybrids
— Slack Distribution Policy

« Specific policy to choose how much slack goes to procrastination versus
slowdown

Variables & Structures Used

* J;: current job of task T;

* R7(?) : available run-time of J; at time ¢

* RF(1) : free time (slack) available to J; at time ¢
— Run-time from the FRT-list with priority > P(J,)

* C7(1) : residual workload of job J;

* Rei(7) : run-time needed to finish J; at speed 1,

* Z,: Statically derived procrastination delay

 ZP,: Dynamically derived procrastination delay

e FRT-list : Free Run Time List, a priority sorted list of
available runtime from processes’ slack

Algorithm 1: Slack Reclamation

Algorithm 2: Slack Distribution

1: On arrival of a new job J;: {J; is an instance of task t;}

2: Rf(t)-t— %; Algorithm 2

3: ‘Add]ob.l,-m_sc_hedulerReadyQueue; specifies this

4: if (processor is in sleep state) then

5: SetZP to any number in the range [0, max(Z;, R (1))];

6: if (Timer is not active) then

7: timer + ZP {Initialize timer}

8: else —

9: timer + min(timer,ZP); }2 3‘;,;’“';" P::,‘f;:;“‘“" (simer =0):
10: endif 18: Scheduler schedules highest priotity task;
11: end if 19: Deactivate timer,
:: Ol:se::"um of each job hi .| Theorem 1: All tasks

+ setSpeed (max(Ters: (t§+R:’ % | meet deadlines using this

14; On completion of job J; : model, see [5] for proof.
15: Add to FRT-lst(RS(¢), 2(4):

* Replace line 5 of algorithm 1 with this:
“(Rg (1) + Ri(r) < R§™ (1)) then

Zi +0;

3
4
5: else

6 ZF + RY (£) + R{(r) — B§™(2); {Note that ZF < Rf (1)}
7: endif

8

ZP + max(Z;,ZF);

Theorem 2: All tasks meet deadlines using this model,
follows from Theorem 1.

Experiment

* Three algorithms tested:
— no-DSR: Static slowdown (n;) with static
procrastination intervals (Z;)
— DSP-SP: Dynamic slowdown (algorithm 1) with static
procrastination (Z;)
— DSP-DP: Dynamic slowdown (algorithm 1) with
dynamic procrastination (algorithm 2)

Idie Enuangyr

normaltzed langth of eleep lrenal

1
10 20 0 0 50 60 70 80 90 100
% BCET verletion

¢ DSR-DP normalized to DSP-SP, effect on sleep periods
and idle energy, U=80%

¢ For BCET variation < 30%, sleep intervals are affected

Results (2)

Results (3)

[a) Ensmy coneumgtion normaltzad to no-DSR (LUsB0%)

¢ DSR-DP & DSP-SP energy normalized to no-DSR
levels, U=80%

¢ A savings of DSR-DP over DSR-SP for BCETvar < 30%
(the two are the same for BCETvar > 30%)

{5) Enorgy consumption normakzsd no DA (L=80%)

o) Camparian ai DEA-EP and 5R-DF (U=80%)

ootz g of

¢ Same for U=60% at BCETvar < 60%
* Watch the axes! Both algorithms save less overall than
in U=80%
¢ Also, same for:
— U=50% at BCETvar < 70%
— U=40% at BCETvar < 80%

Some points

Conclusion

* When U <n,,; (0.41 in the experiment):
— “Static procrastination intervals dominate over dynamic slack
available"
— With nothing left to scavenge, DSR-DP does very little for
these cases
¢ Overall, DSR-DP isn't a huge win over DSR-SP, because
static procrastination already globs the majority of small
idle times
* However, when these statically derived times are too
short to shut down, the small boost given by DSR-DP
could put them over the limit, and thus mean significant
savings

* Slowdown reduces dynamic power, but static power is
becoming the problem in modern processors

Shutting down allows us to cut off all power for a time

e Task procrastination works to lengthen idle times in
which we can shut down

* The paper combines these two existing methods to get the

best of each

Idle energy savings of up to 70% are realized

 This savings will become more important as static power
use increases in future chip designs

Any questions?

Additional reference slides follow...

Dynamic Task Procrastination (1)

* On task completion, if no tasks left to execute:
— Shut down
 If a task arrives and we are shut down, then

— Find the max time ZP; that we can wait and still finish
all tasks on time based on WCET

— Wake up the processor before the least Z?,
— Start processor and run EDF normally

Dynamic Task Procrastination (2)

Power Usage Overview

* The effect of slowdown and shutdown on power
and energy:

Running at Running at Idle Idle
full speed half speed (awake) (shutdown)
T T T N

Dynamic
energy

Dynamic ener:
(full speed) y(ha” speed)gy

Static energy ‘

Power (W)

\

Time

Run-time Consumption

* A task 1; consumes run-time in wall-clock seconds
(i.e. m isn’t involved in this calculation)

o If RF(r) > 0, the run-time is taken from the FRT-
list, else it uses its allotted run-time

* During idle periods, time is used from the FRT-
list unless the list is empty

» These rules can be applied at job arrival &
completion (rather than continuously)

Results for U={50%,40% }

e) Energy conaumption normaized to no-DSA (=50%)

%) Comparison of DEA-GF and DGF-OF (U=50%)

Taio Enry ——
L Slocn o

nomuzad lngh aflsap Inkwval

3 oms
3 os
2 ors
o7
omsf
I).D‘ @ an

% BOET varieton

&) Compartson of DSA-SP and DSRADP (U=40%)

ovmalkad fotal Energy

© 2 ® &

™ @ e 10

e Same for U=50% at BCETvar < 70%, U=40% at BCETvar < 80%

rermallzod gt of daep Intarvsl

