
1

Dynamic Slack Reclamation with
Procrastination Scheduling in Real-

Time Embedded Systems
Paper by Ravindra R. Jejurikar and Rajesh Gupta

Presentation by Tyler Bletsch
NC State University

19 October 2005

Introduction
• Must reduce energy usage!
• Two ways to save power

– Slowdown (DVS)
• Reduce dynamic power, increase execution time, static power unaffected

– Shutdown
• Turn (almost) all power off for a given period of time
• We can use task procrastination to glob together slack times

• Static power usage is growing
– This is due to increasing leakage current in newer & smaller

processors, so slowdown isn't enough...
• Paper’s goal:

– Combine procrastination scheduling with dynamic slowdown
techniques

System Model
• Tasks �i of form {Ti, Di, Ci}

– Ti = Period, Di = Relative deadline, Ci = WCET
• Slowdown

– � = DVS slowdown factor in [0,1]
– �i = Static slowdown of task i
– �crit = Slowdown with least energy per clock cycle

• The minimum value of � worth caring about

• Dynamic Slack Reclamation’s two parts:
– Slack Reclamation Algorithm

• Generic mechanism for all procrastination/slowdown hybrids

– Slack Distribution Policy
• Specific policy to choose how much slack goes to procrastination versus

slowdown

Variables & Structures Used
• Ji : current job of task �i
• Rr

i(t) : available run-time of Ji at time t
• RF

i(t) : free time (slack) available to Ji at time t
– Run-time from the FRT-list with priority > P(Ji)

• Cr
i(t) : residual workload of job Ji

• Rcrit
i(t) : run-time needed to finish Ji at speed �crit

• Zi : Statically derived procrastination delay
• ZD

i : Dynamically derived procrastination delay
• FRT-list : Free Run Time List, a priority sorted list of

available runtime from processes’ slack

Algorithm 1: Slack Reclamation

Theorem 1: All tasks
meet deadlines using this
model, see [5] for proof.

Algorithm 2
specifies this

Algorithm 2: Slack Distribution

• Replace line 5 of algorithm 1 with this:

Theorem 2: All tasks meet deadlines using this model,
follows from Theorem 1.

2

Experiment

• Three algorithms tested:
– no-DSR: Static slowdown (�i) with static

procrastination intervals (Zi)
– DSP-SP: Dynamic slowdown (algorithm 1) with static

procrastination (Zi)
– DSP-DP: Dynamic slowdown (algorithm 1) with

dynamic procrastination (algorithm 2)

Results (1)

• DSR-DP normalized to DSP-SP, effect on sleep periods
and idle energy, U=80%

• For BCET variation < 30%, sleep intervals are affected

Results (2)

• DSR-DP & DSP-SP energy normalized to no-DSR
levels, U=80%

• A savings of DSR-DP over DSR-SP for BCETvar < 30%
(the two are the same for BCETvar > 30%)

Results (3)

• Same for U=60% at BCETvar < 60%
• Watch the axes! Both algorithms save less overall than

in U=80%
• Also, same for:

– U=50% at BCETvar < 70%
– U=40% at BCETvar < 80%

Some points
• When U < �crit (0.41 in the experiment):

– “Static procrastination intervals dominate over dynamic slack
available"

– With nothing left to scavenge, DSR-DP does very little for
these cases

• Overall, DSR-DP isn't a huge win over DSR-SP, because
static procrastination already globs the majority of small
idle times

• However, when these statically derived times are too
short to shut down, the small boost given by DSR-DP
could put them over the limit, and thus mean significant
savings

Conclusion
• Slowdown reduces dynamic power, but static power is

becoming the problem in modern processors
• Shutting down allows us to cut off all power for a time
• Task procrastination works to lengthen idle times in

which we can shut down
• The paper combines these two existing methods to get the

best of each
• Idle energy savings of up to 70% are realized
• This savings will become more important as static power

use increases in future chip designs

3

Any questions?
Additional reference slides follow...

Dynamic Task Procrastination (1)

• On task completion, if no tasks left to execute:
– Shut down

• If a task arrives and we are shut down, then
– Find the max time ZD

i that we can wait and still finish
all tasks on time based on WCET

– Wake up the processor before the least ZD
i

– Start processor and run EDF normally

Dynamic Task Procrastination (2)

Power Usage Overview

Dynamic
energy

(full speed)

Static energy

Dynamic energy
(half speed)

P
ow

er
 (

W
)

Time

Idle
(awake)

Idle
(shutdown)

Running at
half speed

Running at
full speed

• The effect of slowdown and shutdown on power
and energy:

Run-time Consumption

• A task �i consumes run-time in wall-clock seconds
(i.e. � isn’t involved in this calculation)

• If RF
i(t) > 0, the run-time is taken from the FRT-

list, else it uses its allotted run-time
• During idle periods, time is used from the FRT-

list unless the list is empty
• These rules can be applied at job arrival &

completion (rather than continuously)

4

Results for U={50%,40%}

• Same for U=50% at BCETvar < 70%, U=40% at BCETvar < 80%

