Dynamic Slack Reclamation with
Procrastination Scheduling in Real-
Time Embedded Systems

Paper by Ravindra R. Jejurikar and Rajesh Gupta

Presentation by Tyler Bletsch
NC State University
19 October 2005

Introduction

Must reduce energy usage!

Two ways to save power
— Slowdown (DVYS)

* Reduce dynamic power, increase execution time, static power unaffected

— Shutdown

e Turn (almost) all power off for a given period of time
* We can use task procrastination to glob together slack times

Static power usage 1s growing

— This 1s due to increasing leakage current in newer & smaller
processors, so slowdown 1sn't enough...

Paper’s goal:

— Combine procrastination scheduling with dynamic slowdown
techniques

System Model

e Tasks t; of form {7}, D,, C;}
— T, =Period, D, = Relative deadline, C; = WCET

* Slowdown
— 1n =DVS slowdown factor in [0, 1]
— 1, = Static slowdown of task 1
— M. = Slowdown with least energy per clock cycle
e The minimum value of n worth caring about
e Dynamic Slack Reclamation’s two parts:

— Slack Reclamation Algorithm
* Generic mechanism for all procrastination/slowdown hybrids

— Slack Distribution Policy

» Specific policy to choose how much slack goes to procrastination versus
slowdown

Variables & Structures Used

e J.: current job of task t,
* R’(?): available run-time of J; at time ¢

* Rf(1):free time (slack) available to J; at time ¢
— Run-time from the FRT-list with priority > P(J))

e ("(1) : residual workload of job J,

e Reri(f) : run-time needed to finish J; at speed 1.,
» Z : Statically derived procrastination delay

o 7ZP.: Dynamically derived procrastination delay

 FRT-list : Free Run Time List, a priority sorted list of
available runtime from processes’ slack

Algorithm 1: Slack Reclamation

it ek pd i
wN

pd ek
ob

l"Q'.“‘??P:“:‘P.‘H‘*‘WN"

: On arrival of a new job J;: {J; is an instance of task 1; }

: Ri(t) % Algorlthm
: Addjob J; to scheduler Ready Queue;

specifies th1s

: if (processor is in sleep state) then
Set ZP to any number in the range [0, max(Z;, R} (¢))];
if (Timer is not active) then
timer + ZP {Initialize timer}
else r— = O)s
timer + min(timer, ZP); }9, %‘a'ke"fl‘;,“gﬂg:s;’;?m (simer = 0):
end if 18: Scheduler schedules highest priority task;
. end if 19: Deactivate timer;
O'tlsexe:"mn of e'mh"o'? ;’f : Theorem 1: All tasks
+ setSpeed (max(Ners, R (t§+R,’-’ ®)); meet deadlines using this
On completion of job J; : model, see [5] for proof.

: Add to FRT-list(R{ (¢), P(J}));

Algorithm 2: Slack Distribution

e Replace line 5 of algorithm 1 with this:

if (RF (1) +R{(t) < RS™(t)) then
ZE + 0;
else
ZE + R (t)+ Ri(r) — RS (r); {Note that ZF < R (1)}
end lf
ZP «— max(Z;, ZF);

R hWw

Theorem 2: All tasks meet deadlines using this model,
follows from Theorem 1.

Experiment

e Three algorithms tested:

— no-DSR: Static slowdown (n,) with static
procrastination intervals (Z))

— DSP-SP: Dynamic slowdown (algorithm 1) with static
procrastination (Z))

— DSP-DP: Dynamic slowdown (algorithm 1) with
dynamic procrastination (algorithm 2)

Results (1)

(b) Comparison of DSR-SP and DSR-DP (U=80%)

1 i i i 1.7

Idle Energy —— —
095 | Sleep Interval ——— |, 8 E
0.9 15 i‘
g 0.85 } . 14 5
(1] . "E,
g o8 ‘ 113 E
0.75 \ {12 §
07 {11 E
2

0.865 a a i n a x 1

10 20 30 40 50 80 70 80 90 100
% BCET variation

 DSR-DP normalized to DSP-SP, effect on sleep periods
and 1dle energy, U=80%

e For BCET varnation < 30%, sleep intervals are affected

Results (2)

(a) Energy consumption normaltzed to no-DSR (U=80%)

0.98 DSR-SP ——
008 |DSRDP v

o
u n
L.
8 B
T T

normallzed total Energy
o
8

0.88 |
0.88 |
0.84 =" . N
10 20 a0 40 80 80 70 80 80 100
% BCET variation

 DSR-DP & DSP-SP energy normalized to no-DSR
levels, U=80%

e A savings of DSR-DP over DSR-SP for BCETvar < 30%
(the two are the same for BCETvar > 30%)

Results (3)

normalized total Ene

(2) Energy consumption nommalized to no-DSR (U=60%) (b) Comparison of DSR-SP and DSR-DP (U=80%)

0.98 DSR-SP ——

Idle Energy ——
0.97 |DSR-DP ---v--- - 0.5 |

Slesp Imerval -—»-—

18

117
118
115
114
113
112
1141

1

10 20 a0 40 50 80 70 80 90 100 10 20 30 40 50 80 70 80 g0 1
% BCET varlation % BCET variation

e Same for U=60% at BCETvar < 60%

 Watch the axes! Both algorithms save less overall than
in U=80%
e Also, same for:

— U=50% at BCETvar < 70%
— U=40% at BCETvar < 80%

normallzed length of sleep Interval

Some points

* When U <1, (0.41 in the experiment):

— “Static procrastination intervals dominate over dynamic slack
available"

— With nothing left to scavenge, DSR-DP does very little for
these cases
e Overall, DSR-DP isn't a huge win over DSR-SP, because
static procrastination already globs the majority of small
1dle times

 However, when these statically derived times are too
short to shut down, the small boost given by DSR-DP
could put them over the limit, and thus mean significant
savings

Conclusion

e Slowdown reduces dynamic power, but static power 1s
becoming the problem 1n modern processors

e Shutting down allows us to cut off all power for a time

e Task procrastination works to lengthen idle times in
which we can shut down

e The paper combines these two existing methods to get the
best of each

e Idle energy savings of up to 70% are realized

e This savings will become more important as static power
use increases in future chip designs

Any questions?

Additional reference slides follow...

Dynamic Task Procrastination (1)

* On task completion, if no tasks left to execute:
— Shut down

e If a task arrives and we are shut down, then

— Find the max time ZP, that we can wait and still finish
all tasks on time based on WCET

— Wake up the processor before the least Z,

— Start processor and run EDF normally

Dynamic Task Procrastination (2)

s oo

0 2 i4 6 I8 10 12 M4 16 18 20 22
time —~

(b) Task schedule (without dynamic task procrastination).

: ; delay=3 : : ; delay=3,
2] ifF7 [2]=2] f
2 2 P

2

—

.

o 2 4 6 8 0 iz s 6 _n » =
time —»=

(c) Extended idle intervals with dynamic task procrastination

Power Usage Overview

e The effect of slowdown and shutdown on power
and energy:

Running at Running at Idle Idle
full speed half speed (awake) (shutdown)
T T N T
—k .
= Dynamic
- energy 5 .
o) ynamic energy
% (full speed) (half speed)
o
Static energy

Time

Run-time Consumption

* A task T, consumes run-time in wall-clock seconds
(1.e. n1sn’t involved 1n this calculation)

o If R (¥) >0, the run-time is taken from the FRT-
list, else 1t uses 1ts allotted run-time

e During idle periods, time 1s used from the FRT-
list unless the list 1s empty

e These rules can be applied at job arrival &
completion (rather than continuously)

Results for U={50%,40% }

normaltzed total Energy

normallzed total Energy

(a) Energy consumption normaltzed to no-DSR (U=50%) (b) Comparison of DSR-SP and DSR-DP (U=50%)
0.995 T r T T T r T T 1 T . T T T T T 18
DSR-SP —— Idle Energy ——
0.99 FDSR-DP ------ . 095 ¥—-Sleepnigrval ---»--- 1417
0.985 | T e
09 | B {18
0.98 B ‘||
0975 | 115
097 | 114
0965 | {13
096 |
112
0.955 |
| 41141
0.95] “~
0845 08 - 1
10 20 30 40 50 60 70 80 890 100 10 30 40 50 60 70 80 80 100
% BGET variation % BGET varlation
(a) Energy consumption normalized to no-DSR (U=40%) (b) Comparison of DSR-SP and DSR-DP (U=40%)
10008 rosRep —— i i i i i i 1 " Idle Energyy —— i i i 11
1 DSR-DP ---3--- - 0.995 | Sleep Interval ---»---
_______________ - 089 | 1.08
0.9985) /,_—-’ - osses |
0.999 | - B oss} 1.08
/ 5 0975 B
0.9985 I ' 2 oo7} 1.04
e =
0998 | f'- 4 0.885 |
/ 098 [7 TR 1.02
0.9975 -‘, / 0.9s5 |
o.m " L 1 1 L 1 L 1 L 0.95 1 L 1 L 1 1 1 -‘..‘."-.J. 1
10 20 30 40 50 80 70 80 80 100 10 20 30 40 50 60 70 8 90 100

% BCET varlation % BCET varlation

e Same for U=50% at BCETvar < 70%, U=40% at BCETvar < 80%

normallzad langth of sleap Interval

normallzed length of sleep Interval

