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Introduction

Must reduce energy usage!

Two ways to save power
— Slowdown (DVYS)

* Reduce dynamic power, increase execution time, static power unaffected

— Shutdown

e Turn (almost) all power off for a given period of time
* We can use task procrastination to glob together slack times

Static power usage 1s growing

— This 1s due to increasing leakage current in newer & smaller
processors, so slowdown 1sn't enough...

Paper’s goal:

— Combine procrastination scheduling with dynamic slowdown
techniques



System Model

e Tasks t; of form {7}, D,, C;}
— T, =Period, D, = Relative deadline, C; = WCET

* Slowdown
— 1n =DVS slowdown factor in [0, 1]
— 1, = Static slowdown of task 1
— M. = Slowdown with least energy per clock cycle
e The minimum value of n worth caring about
e Dynamic Slack Reclamation’s two parts:

— Slack Reclamation Algorithm
* Generic mechanism for all procrastination/slowdown hybrids

— Slack Distribution Policy

» Specific policy to choose how much slack goes to procrastination versus
slowdown



Variables & Structures Used

e J.: current job of task t,
* R’(?): available run-time of J; at time ¢

* Rf(1):free time (slack) available to J; at time ¢
— Run-time from the FRT-list with priority > P(J))

e ("(1) : residual workload of job J,

e Reri(f) : run-time needed to finish J; at speed 1.,
» Z : Statically derived procrastination delay

o 7ZP.: Dynamically derived procrastination delay

 FRT-list : Free Run Time List, a priority sorted list of
available runtime from processes’ slack



Algorithm 1: Slack Reclamation
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: On arrival of a new job J;: {J; is an instance of task 1; }

: Ri(t) % Algorlthm
: Addjob J; to scheduler Ready Queue;

specifies th1s

: if (processor is in sleep state) then
Set ZP to any number in the range [0, max(Z;, R} (¢))];
if (Timer is not active) then
timer + ZP {Initialize timer}
else r— = O)s
timer + min(timer, ZP); }9, %‘a'ke"fl‘;,“gﬂg:s;’;?m (simer = 0):
end if 18: Scheduler schedules highest priority task;
. end if 19: Deactivate timer;
O'tlsexe:"mn of e'mh"o'? ;’f : Theorem 1: All tasks
+ setSpeed (max(Ners, R (t§+R,’-’ ® )); meet deadlines using this
On completion of job J; : model, see [5] for proof.

: Add to FRT-list(R{ (¢), P(J}));



Algorithm 2: Slack Distribution

e Replace line 5 of algorithm 1 with this:

if (RF (1) +R{(t) < RS™(t) ) then
ZE + 0;
else
ZE + R (t)+ Ri(r) — RS (r); {Note that ZF < R (1)}
end lf
ZP «— max(Z;, ZF);
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Theorem 2: All tasks meet deadlines using this model,
follows from Theorem 1.




Experiment

e Three algorithms tested:

— no-DSR: Static slowdown (n,) with static
procrastination intervals (Z))

— DSP-SP: Dynamic slowdown (algorithm 1) with static
procrastination (Z))

— DSP-DP: Dynamic slowdown (algorithm 1) with
dynamic procrastination (algorithm 2)



Results (1)

(b) Comparison of DSR-SP and DSR-DP (U=80%)
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e For BCET varnation < 30%, sleep intervals are affected



Results (2)

(a) Energy consumption normaltzed to no-DSR (U=80%)

0.98 DSR-SP ——
008 |DSRDP v

o
u n
L.
8 B
T T

normallzed total Energy
o
8

0.88 |
0.88 |
0.84 =" . N . . . . .
10 20 a0 40 80 80 70 80 80 100
% BCET variation

 DSR-DP & DSP-SP energy normalized to no-DSR
levels, U=80%

e A savings of DSR-DP over DSR-SP for BCETvar < 30%
(the two are the same for BCETvar > 30%)



Results (3)
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(2) Energy consumption nommalized to no-DSR (U=60%) (b) Comparison of DSR-SP and DSR-DP (U=80%)
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e Same for U=60% at BCETvar < 60%

 Watch the axes! Both algorithms save less overall than
in U=80%
e Also, same for:

— U=50% at BCETvar < 70%
— U=40% at BCETvar < 80%
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Some points

* When U <1, (0.41 in the experiment):

— “Static procrastination intervals dominate over dynamic slack
available"

— With nothing left to scavenge, DSR-DP does very little for
these cases
e Overall, DSR-DP isn't a huge win over DSR-SP, because
static procrastination already globs the majority of small
1dle times

 However, when these statically derived times are too
short to shut down, the small boost given by DSR-DP
could put them over the limit, and thus mean significant
savings



Conclusion

e Slowdown reduces dynamic power, but static power 1s
becoming the problem 1n modern processors

e Shutting down allows us to cut off all power for a time

e Task procrastination works to lengthen idle times in
which we can shut down

e The paper combines these two existing methods to get the
best of each

e Idle energy savings of up to 70% are realized

e This savings will become more important as static power
use increases in future chip designs



Any questions?



Additional reference slides follow...



Dynamic Task Procrastination (1)

* On task completion, if no tasks left to execute:
— Shut down

e If a task arrives and we are shut down, then

— Find the max time ZP, that we can wait and still finish
all tasks on time based on WCET

— Wake up the processor before the least Z,

— Start processor and run EDF normally



Dynamic Task Procrastination (2)
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(b) Task schedule (without dynamic task procrastination).
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(c) Extended idle intervals with dynamic task procrastination



Power Usage Overview

e The effect of slowdown and shutdown on power
and energy:

Running at Running at Idle Idle
full speed half speed (awake) (shutdown)
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Run-time Consumption

* A task T, consumes run-time in wall-clock seconds
(1.e. n1sn’t involved 1n this calculation)

o If R (¥) >0, the run-time is taken from the FRT-
list, else 1t uses 1ts allotted run-time

e During idle periods, time 1s used from the FRT-
list unless the list 1s empty

e These rules can be applied at job arrival &
completion (rather than continuously)



Results for U={50%,40% }

normaltzed total Energy

normallzed total Energy

(a) Energy consumption normaltzed to no-DSR (U=50%) (b) Comparison of DSR-SP and DSR-DP (U=50%)
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e Same for U=50% at BCETvar < 70%, U=40% at BCETvar < 80%
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