

CSC 714 Real Time Computer Systems

Active Messages for the Renesas M16 Board

Final Project Report

Manan Shah
Trushant Kalyanpur

Final Project Report

Goals Achieved:.. 3
Application Tested:... 3
Issues Solved while achieving our Goals: .. 3

On the Mote Side: ... 3
Interpretation of the frame format... 3
Data transmission from the Mote:... 6
Data Reception on the Mote: .. 6
Problems with the parsing of the data packet: .. 7
Problem with the Java program: ... 7

On the M16C Side: ... 7
Data Reception:... 7
Data Transmission: ... 8

Unsolved Issues: ... 8
Future Work:... 9
Individual Member Contributions: ... 9

Goals Achieved:
1) We managed to successfully establish communication between the mote and the

M16C attached to the Zigbee board. The data payload of TinyOS Active Message
sent by the mote was successfully parsed and the data was verified to be correct.

2) We managed to establish some sort of communication in the other direction as
well i.e. between the M16C board and the mote. The details of the progress in this
direction are included in the report.

Application Tested:
 We wrote a sample application to transfer temperature readings from the mote to
verify communication between the mote and the M16C board. The mote sends out
temperature values at repeated intervals and the M16C correctly extracts this information
from the active message received. We verified this data with the message received by
another mote connected to a PC, which displayed the packet contents using a Java
program.

Issues Solved while achieving our Goals:

On the Mote Side:

Interpretation of the frame format
In the previous report we mentioned that there was a problem in interpreting the

format of the packet received on the M1. In order to determine that let us first look at
what a typical data packet for the 804.15.4 protocol looks like.

The frame format is as seen in the figure above. The preamble sequence for an IEEE
804.15.4 frame is 8 zeros followed by the sequence 0xA7, the byte A7 is stored in the
start of frame delimiter and the 8 zeros are used for synchronization purposes. The field
frame length must include the length of the entire payload from the frame control

sequence to the frame check sequence. The Frame control field is the key to identifying
the type of the packet. The data sequence number is incremented so as to avoid duplicate
frames from being accepted. The address information contains the address of the
transmitter or the intended receiver. The frame payload contains the data to be
transmitted and the frame check sequence verifies the integrity of the frame.

On studying the chip documentation and the Telos packet we observed the following:

The CC2420 chip implements the preamble sequence and the start of frame
delimiter by setting the SYNCWORD register to 0xA70f and the preamble field of the
MDMCNTRL0 register to 2(Refer the Chipcon CC2420 datasheet Page number 36 for
more details).

The CC2420 chip also fills in the frame check sequence on transmission and also verifies
the data integrity on reception but the frame check sequence is not written to the receiver
or transmitter FIFO.

The remaining fields are filled by the Telosb mote by using the following data structure:

typedef struct TOS_Msg {

 uint8_t length;
 uint8_t fcfhi;
 uint8_t fcflo;
 uint8_t dsn;
 uint16_t destpan;
 uint16_t addr;
 uint8_t type;
 uint8_t group;
 int8_t data[28];
 uint8_t strength;
 uint8_t lqi;
 bool crc;
 bool ack;
 uint16_t time;
} __attribute((packed)) TOS_Msg;

The fields correspond to the frame format shown above. The destpan, addr, type and the
group fields come under the address information field of the frame. The strength and the
lqi fields are filled in at the receiver side using the signal strength at the receiver. The
data[28] stores the data packet to be transmitted. The crc and the ack fields say whether
the CRC and the acknowledgements are implemented or not. The time field stores the
time stamp of the data that is transmitted. The last three fields are the part of the data
packet and are parsed upon reception by the receiver.

During our presentation we had pointed out that the FCF fields were interchanged. Let us
first understand what the FCF frame looks like:

As seen above the Telos structure divides this frame into two parts namely:
uint8_t fcfhi;
uint8_t fcflo;

They are initialized by the following two constants in the CC2420Const.h
#define CC2420_DEF_FCF_LO 0x08
#define CC2420_DEF_FCF_HI 0x01 // without ACK
#define CC2420_DEF_FCF_HI_ACK 0x21 // with ACK

The following two fields were interpreted by us as follows:
For the high byte: Dest Addressing Mode and the source addressing mode is set to 0 in
case of 0x01 and 0x21
For the low byte the frame type is zero; the security enabled bit is set; the frame pending
the acknowledge request and the intra pan are set to zero.

Now we see a few anomalies in this. First the HI byte is defined for with ACK and
without ACK, while the ACK field is in the lower byte. Also there is no support for
encryption and the bits set in the high frame come under the reserved field.

The frame field being set to zero is interpreted as a beacon and the mote has TinyOS data
structure for the packet does not support the beacon format. It exactly resembles the data
format.

Therefore we realized that the bits have been reversed. On making the assignment as
follows:

#define CC2420_DEF_FCF_HI 0x08
#define CC2420_DEF_FCF_LO 0x01 // without ACK
#define CC2420_DEF_FCF_LO_ACK 0x21 // with ACK

Now the high byte the destination address is set to a value of 2.
For the low byte the value of the ACK is set and reset accordingly and the frame type bit
is set to 1, which indicates a data frame.

The problem gets interesting due to the fact that the incorrectly transmitted frame of
0x0108 which was happening in the previous case was interpreted correctly as 0x0801 at
the receiver board. This implies the receiver read the data in the opposite manner; hence
the incorrect code seems to work.

We have therefore realized that the interpretation of the FCF field is somewhat
ambiguous.

Data transmission from the Mote:

The active messages generated by the applications are passed on to the component
AMStandard.nc which sets the following fields: length, addr, type and group.

The AMStandard passes the message to the CC2420RadioM component which further
sets the following fields: fcfhi, fcflo, destpan, adjust the destination in the correct byte
order, the length of the message (length) and the sequence number of the message(dsn).

The message is next passed to the component which writes the data to the transmit buffer
and the data is sent through the radio antenna.

Data Reception on the Mote:

When the data is received on the mote, the receive buffer gets full and the FIFOP
interrupt is generated on receiving this interrupt. The program checks whether the FIFO
has overflowed, if it has then the FIFO is flushed and no further action is taken.
Otherwise a function named “delayedRXFIFO” is called. It first checks if a previous
packet is still in the process of being read, if this condition is true then the task waits till
the read operation has finished. If no packet is being received then the task calls the
Chipcon component to read the FIFO and passes to it the rxbufptr to store the read value.
Once the read process is over, it notifies the cc2420Radio component by signalling the
RXFIFODone function.

This function checks if the anticipated data packet is of the correct size or if it is
not an empty packet. If any of the conditions are false the packet is flushed. It then
checks if acknowledgement is required for the given packet, if enabled then an
acknowledgement is sent. It also checks the FCF bits to see that the packet received is a
valid packet. After all the checking is done it computes the length, address and the CRC
of the packet. It also computes the signal strength and the LQI, this data is provided by
the chip upon reception of the packet. It then calls the PacketRcvd() task which signals
the AMStandard.nc component the packet is received. This components checks for a
valid CRC bit, the group, and the address. If all these fields match it signals the
application layer that the packet has been successfully received.

For this project, when the packet is sent from the board to the mote, initially we
did not receive any indication at the application layer of the packet being received. In
order to make packet reception possible we had to turn off all the packet checking
mechanisms since we did not know about the format of the received packet. We used the
LEDS to trace the passing of the received packet from the lower layer to the upper layers;
we toggled the LEDS in each of the functions so that we knew till what stage the packet
reached. After disabling all the checking mechanisms we were able to make the packet
reach the application layer. The next step is to determine the exact structure of
transmission if possible and then write the same structure on the reception side and parse
the packet.

Problems with the parsing of the data packet:
We observed that the data packet transmitted from the Zigbee board conforms to

the 802.15.14 standard, as shown above but the TOS message structure was not exactly
equivalent to the 802.15.14 standard. During reception the address fields and the data
fields on the mote side are not parsed correctly.

The only fields that are parsed correctly are the fcf and the sequence number (dsn)
and after that there is absolutely no correlation in the transmitted and the received data
structures. In fact the data has no correlation and we could not identify the data pattern
sent out by the board. This can be corrected in the future by writing a new data structure
that conforms to the IEEE standards and then passing it to the application layer using a
new interface or by passing the raw unformatted data upwards using a new interface. This
unformatted data could be displayed on the computer and then accordingly parsed after
some correlation is found.

Problem with the Java program:
It was observed that the Java program can take in packets having a maximum size

of 28 bytes. We could not change the packet size since we are not very familiar with Java
and the program structure in the header files. In order to get around this problem we tried
we split the data packet into two packets and sent it to the Java program. When two
packets are sent simultaneously then the data sent in the second packet is incorrect.
Therefore we have written two programs, one to transmit the header and the other to
transmit the data fields. The lack of support for unsigned numbers in java causes
difficulty in interpreting the packets, which is one major disadvantage of using the Java
programming language.

On the M16C Side:

Data Reception:
 We first confirmed the reception of a message from the mote by using the
mcpsDataIndication function, which is generated by the MAC layer when a data frame is
successfully received. Glowing LED’s on the M16 board confirmed the reception of
some sort of message being received by the board. The next step was to identify whether
the message received was identical to the one sent out by the mote.
 To clearly identify the payload field of the Active Message sent out by the
mote, we sent a specific data pattern in the payload from the mote. We observed that the
expected payload was actually received at an offset from the payload on the M16 board.
The data from the mote actually begins from byte 2 of the received payload i.e. pMsdu[2]
onwards. The first two bytes of pMsdu actually correspond to the type and the group
fields of the active message.
 We managed to successfully extract the following fields of the active message:

1) length – The length of the payload in bytes.

2) fcfhi – The HI byte of the FCF
3) fcflo - The LO byte of the FCF
4) dsn – The sequence number
5) destpan – The destination PAN ID
6) addr – The destination Address
7) type – The type field
8) group – The group field
9) data[28] – The data payload (28 bytes)

The problem we faced while extracting this information was that the data passed to the
application layer did not contain all the information mentioned above. So we had to use
the KD30 debugger to identify the contents of the packet received at the lower MAC
layer and we extracted the Active Message information from the MAC layer directly. In
particular, the MAC_RX_INFO (mrxInfo) structure defined in the mac_rx_engine.h
header file contained the information of the received packet.

Data Transmission:
 The packet that is transmitted consists of a header upto 23 bytes (2 byte FCF + 1
byte sequence number + upto 20 bytes of Address information), 102 bytes of the data
payload and 3 bytes of the trailer (Frame Check Sequence FCS).
 We transmitted a packet using the mcpsDataRequest function, and used no
transmission options (txOptions). The mcpsDataConfirm function is called by the MAC
layer when a packet to be transmitted has succeeded or failed. We verified the successful
transmission of the data by toggling an LED on successful transmission.
 The problem however, is that we have not been able to extract the data payload
sent by the M16 board on the mote side. We used the Java program to display the
contents of the received message. As stated previously the first four bytes (including the
FCF and the sequence number) of the message seem to be parsed correctly. The
remaining bytes seem to have no correlation to the data being sent by the board.

Unsolved Issues:
 The LCD display does not seem to work when both the M16C board and the Zigbee
board are connected. If the Zigbee board is disconnected, then the data is displayed
correctly on the LCD. After the addition of the Zigbee board, the LCD display goes blank
and changing the contrast on the M16C board doesn’t seem to have any effect on the
screen either. We therefore used the KD30 debugger to view the contents of the message
received and correctly verified the temperature readings sent out by the mote.
 On the moteside the packet received is not parsed correctly and hence no sense
can be made out of the data.

Future Work:
1) Developing a nesC application to correctly parse and extract the message received

by the mote and using a Java application to display the data received.
2) This project can be extended to display the information received by the M16C

board on a web browser by connecting the M16C board to the SKPCOMMS
board. The SKPCOMMS board has an Ethernet controller chip and it
communicates to a PC via a LAN cable. Data such as the temperature readings
from various motes can then be displayed on a web browser on the PC.
Furthermore, a user can remotely monitor the data received by the M16C board
by using the web browser from a remote location.

Individual Member Contributions:
 Trushant was responsible for doing the work on the zigbee board side which
involved receiving the message and parsing it. All the fields were extracted successfully
and stored in an array. He was also responsible for formatting the transmission frame.
 Manan was responsible for software development on the mote side. He wrote the
temperature gathering application on the mote side and transmitted it using the radio
channel. He was also responsible for studying the reception process and modifying the
TinyOS files so that the message reached the application layer.

Link to the project Website

http://www4.ncsu.edu/~mmshah/Project.htm

	CSC 714 Real Time Computer Systems
	Active Messages for the Renesas M16 Board
	Final Project Report
	Final Project Report
	Goals Achieved:
	Application Tested:
	Issues Solved while achieving our Goals:
	On the Mote Side:
	Interpretation of the frame format
	Data transmission from the Mote:
	Data Reception on the Mote:
	Problems with the parsing of the data packet:
	Problem with the Java program:

	On the M16C Side:
	Data Reception:
	Data Transmission:

	Unsolved Issues:
	Future Work:
	Individual Member Contributions:

