
 
 
 
 
 

RAM Based File System  
for 

HTTP daemon on Renesas M16 board 
 
 
 
 
 
 
 
 

Cuong Phu Nguyen          Kyung Chul Lee 
cpnguyen                           kclee 

 
 
 
 
 
 
 
 

CSC 714 – Real Time Computer Systems 
 
 

Dr. Mueller 
 
 
 
 
 

 
 

November 30, 2005 



1. Introduction 
 
The Renesas M16 offers a robust platform of 
16-bit CISC featuring high ROM code 
efficiency, extensive EMI/EMS noise immunity, 
ultra-low power consumption, high-speed 
processing in actual applications, and numerous 
and varied integrated peripherals. Extensive 
device scalability from low- to high-end MCU 
series, featuring a single architecture as well as 
compatible pin assignments and peripheral 
functions, provides support for a vast range of 
application fields.  The Renesas M16 is 
equipped with two 126kB RAMs, a 10/100 
BaseT port, a RS232 port, a LCD, three LEDs, 
etc.   It comes with the Renesas software 
development tools which include a complete 
software development tool chain including, 
HEW (IDE, GUI), NC30WA (C-compiler, 
assembler, and linker), KD30 (Debugger), and 
FoUSB (Flash-over-USB Programmer). A real-
time, source-level debug environment is 
implemented using the KD30 debugging software with the RTA-FoUSB-MON Flash 
Programmer/In-Circuit Debugger (ICD). The Flash-over-USBTM(FoUSB) Programmer 
software, with the ICD, allows in-system programming. The ICD and firmware provide a 
convenient USB (Universal Serial Bus) interface between the board and the host PC. This 
interface reduces resource requirements on the processor.  
 
Our project is aiming to implement a filesystem on Renesas to be used by a HTTP 
daemon.  The existing network stack is implemented as a single dispatcher, which bases 
on the input packet types to invoke the appropriate protocol entities. HTTP daemon is on 
of such protocols running on top of TCP layer. For each new connection to HTTP 
daemon, data can be read or written. In order to operate, the HTTP daemon uses a set of 
filesystem APIs to store, retrieve and modify user data. As a goal of the project, the 
HTTP daemon needs to handle sensors data, collected by other group's projects. The 
sensor data will be sent to the HTTP daemon via 10/100 BaseT port or via 801.11b/g 
interface. As data need to go in and out fast enough, we need to implement a 
RAM filesystem and provide the HTTP daemon with a set of APIs. As the RAM capacity 
of the board is limited, the filesystem needs to be compact enough. Hence the lengths of 
file name and the number of directory levels should be limited. 
 
 
2. Approach. 
 



We will adopt a step-by-step approach to achieve our goal and break down our project 
into four different stages. However, as we approaching the problem, there may be more 
sub stages to be added. 
 
Stage 1 - Get familiar with the Renesas board and environment. 
 
 
There board comes with an integrated development environment for Windows. This IDE 
allow us to create and maintain the project, compile the code, and download the code 
from PC through the USB port. The debugging capability is also provided. There are 
open source software modules, such as BSP, drivers, and sample applications. These 
open source programs need to be explored in order to get familiar with the board 
hardware. Ideas about specific implementation may come from these source codes too. 
 

 
 
 

1. M16C StaterKit Plus Software Install 
 

We installed software from the CD-ROM came with M16C.  It asked for the serial number and 
we could find under the actual board after we detach it from the ether board. 

 
2. USB Driver Installation 
 
We also had to install the driver for the RTA-FoUSB-MON In-Circuit Debugger (ICD) before 
we could use it.  First, we verified that the Target Power Mode switch is in the USB position 
so that the power to the board will be supplied from the either board not from USB. 
Next, we connected one end of the mini USB cable into the ICD and the other end into our 
PC’s USB port. The red “Power” LED on the ICD lit up and the yellow “Status” LED started 
blink.   

 
 
 
 
Stage 2 - Design a RAM file system and a set of API. 
 
We may take a look at existing filesystem like Extended File System, FAT, etc. to design 
our own RAM file system. Based on the requirement and the limitation of the RAM 



space, we may not implement the fancy features like long file names, extended number of 
file entries, too many directory levels, etc. The file system may have the following 
functional blocks: 

 
File/Directory entry blocks.  
This block will be searched first in order to seek for a file. The total number of entries 
will be fixed. Each entry contains the file name, file size and a pointer to file location. 
 
File data block.  
This block contains the actual data for a file. The advantage of the RAM file system is 
that it is more flexible than other sect based file system. On the other hand, we need to 
take into account memory allocation in our code. 
 
The set of APIs to maintain and manipulate the filesystem, as well as to provide services 
for the HTTP daemon. Since the task structure is simple, the API may not need to deal 
with the re-entrence issue: only one function is called at a time. One of the top priority 
requirement to the APIs is the execution time need to be short. There won't be any 
blocking waits. 
 

We had developed APIs as following: 

 
/* definition for return code */ 
#define FS_SUCCESS_C        0 
#define FS_GEN_ERROR_C      1 
#define FS_MEM_ERROR_C      2 
#define FS_NAME_ERROR_C     3  
#define FS_UNKNOWN_ERROR_C  4  
 
 
/* file access mode */ 
#define FS_READ_ONLY    0 
#define FS_WRITE_ONLY    0 
#define FS_READ_WRITE    0 
 
/*  
CREATE A FILE 
 
- path: the absolute path name of a file to be created 
- size: the final size of a file.  The size is fixed and can not be chaged. 
 
fs_create() returns 0 for success or 1 otherwise 
*/ 
 
INT16 fs_create(FAR char* path, INT16 size); 
 
 
 
/* 
OPEN A FILE 
 
- path: the asolute path name of a file.   
- mode: one of the following FS_READ, FS_WRITE, or FS_READ_WRITE 
 
open() return the file descriptor or -1 if an error occured. 
*/ 
 
fs_fileHandle_t * open(FAR char* path, INT16 mode); 



 
 
/* 
CLOSE A FILE 
 
- fd: file descriptor 
 
close() returns nothing 
*/ 
 
void close(fs_fileHandle_t * fd); 
 
 
 
/* 
READ FROM A FILE DESCRIPTOR  
 
- fd: file descriptor 
- buf: data to be stored into 
- count: number of bytes to read 
 
read() attempts to read up to count bytes from file descriptor fd into the buffer 
starting at buf. 
If count is zero, read() returns zero and has no other results. 
*/ 
 
INT16 read(fs_fileHandle_t * fd, FAR char *buf, INT16 count); 
 
 
/* 
WRITE TO A FILE DESCRIPTOR  
 
- fd: file descriptor 
- buf: data to be stored from 
- count: number of bytes to write 
 
write() writes up to count bytes to the file referenced by the file descriptor fd 
from the buffer starting at buf. 
*/ 
 
INT16 write(fs_fileHandle_t * fd, FAR char *buf, INT16 count); 
 
 
/* 
REPOSITION READ/WRITE FILE OFFSET 
 
- fd: file descriptor 
- buf: data to be stored from 
- count: one of the following    
       FS_SEEK_SET: The offset is set to offset bytes. 
       FS_SEEK_CUR: The offset is set to its current location plus offset bytes. 
       FS_SEEK_END: The offset is set to the size of the file plus offset bytes. 
 
seek() repositions the offset of the file descriptor to the argument offset 
according to the directive whence. 
*/ 
 
INT16 seek(INT16 fd, INT16 offset, INT16 whence); 
 
 
/* 
MAKE A NEW DIRECTORY 
 
- path: the absolute path name of a directory to be created 
- max_size: directory size 
 
mkdir() return 1 for sucess or 0 otherwise 
*/ 
 
INT16 mkdir(FAR char *path); 
 



 
/* 
READ DIRECTORY LIST 
 
- path: the absolute path name of a directory to be read 
 
readdir() list of strings containing filenames 
*/ 
 
 
FAR char** readdir(FAR char *path); 
 
/* 
FORMAT FILE SYSTEM 
 
fs_format() return 0 for sucess or 1 otherwise (general error) 
*/ 
INT16 fs_format(); 
 
/* 
PRINT INFORMATION ABOUT THE FILE SYSTEM 
 
fs_print_all() prints all the file system to the screen for debugging 
*/ 
#ifdef SIMULATION 
void fs_print_all(); 
#endif 
 

The file system specification as following: 

 
Directory Entries  
 

1 byte The maximum number of files 
1 byte The number of existing files  
Multiple of 
20 bytes 

 
File Entries 
 
11 bytes Filename (maximum 10 characters) 

1  bytes File type 
       - 0 for file 
       - 1 for directory 

4 byte File size 
4 byte File Location 

 
 

 
 File Descriptor 
 

1 byte Type 
- 0 for file not in use 
- 1 for file currently being read 
- 2 for file currently being written 



- 3 for file currently being read and written 
4 byte Operation cursor byte offset from the begging of the file 
4 byte File Location (page index) 
4 byte File Size (# pages) 

 
 
 Page Counter 
 

4 byte Available Free Space 
 
 

 

We are currently implementing this file system on the Linux environment first in 
order to prove the concept of the algorithm. 

 
 
Stage 3 -  Improvement for the HTTP daemon  
 
As we are implementing the project, we originally planned to make improvements on the 
code of the HTTP daemon. To some extent, we can event improve the protocol stack if 
needed.  However, this stage was not performed due to insufficient time. 
 
 
Stage 4 - Test module. 
 
We wrote a testing script which creates directories and files and performs read and writes 
on a Solaris machine to verify the correctness of the program. 
 

 
Beginning testing the file system... 
number of actually created directory: 10 
max directory creation time is 3214480556 
min directory creation time is 3214480556 
average directory creation time is 208003448 
directory tests are passed succesfully 
number of actually created files: 20 
max file creation time is 3214480492 
min file creation time is 3214480492 
average file creation time is 208003384 
file creation tests are passed succesfully 
number of actually written files: 20 
max file writing time is 3214480492 
min file writing time is 3214480492 
average file writing time is 208003384 
file writing tests are passed succesfully 
data read from file /entry_1 
 0  
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96  



97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112  
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127  0  
 
... 
 
number of actually read files: 20 
max file reading time is 3214480492 
min file reading time is 3214480492 
average file reading time is 208003384 
file reading tests are passed succesfully 
----------------------- 
Entering directory / 
----------------------- 
Entering directory entry_1 
Leaving directory entry_1 
----------------------- 
----------------------- 
Entering directory entry_2 
Leaving directory entry_2 
----------------------- 
----------------------- 
Entering directory entry_3 
Leaving directory entry_3 
----------------------- 
----------------------- 
Entering directory entry_4 
Leaving directory entry_4 
----------------------- 
----------------------- 
Entering directory entry_5 
Leaving directory entry_5 
----------------------- 
----------------------- 
Entering directory entry_6 
Leaving directory entry_6 
----------------------- 
----------------------- 
Entering directory entry_7 
Leaving directory entry_7 
----------------------- 
----------------------- 
Entering directory entry_8 
Leaving directory entry_8 
----------------------- 
----------------------- 
Entering directory entry_9 
Leaving directory entry_9 
----------------------- 
----------------------- 
Entering directory entry_10 
Leaving directory entry_10 
----------------------- 
Leaving directory / 
----------------------- 
Done testing the file system!!! 

 
 
 
 
References 
 

[1] The File system, 1996-1999 David A Rusling 
http://www.tldp.org/LDP/tlk/fs/filesystem.html 

 



[2] HEW (Highperformance Embedded Workshop)  
http://www2.eu.renesas.com/products/mpumcu/tool/hew/documents.html 
 
[3] HTTP - Hypertext Transfer Protocol http://www.w3.org/Protocols/ 

 
[4] M16C Family, Renesas 
http://america.renesas.com/fmwk.jsp?cnt=m16c_family_landing.jsp&fp=/products/m
pumcu/m16c_family/ 

 
[5] SFS: Simple Filesystem http://www.eros-os.org/devel/ObRef/standard/SFS.html 

 
[6] Transaction-Safe FAT File System 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcemain4/html/cmcontransaction-safefatfilesystem.asp 

 
 


