
CSC 714 : Project Report 2

Gayathri TK Jayush Luniya

gtambar@ncsu.edu jrluniya@ncsu.edu

RTFS : Real Time File System

Project Url
 http://www4.ncsu.edu/~jrluniya/rt/

Introduction to Flash File Systems
An efficient and reliable file storage system is important in wireless sensor network so that data can be logged
for later asynchronous delivery. In addition to this, incorporating a web server on the intermediate relay device
in the sensor network provides a mechanism for allowing users to perform data collection using any standard
browser. The web server uses a file system to store embedded web pages in RAM, flash, or on disk. File
systems provide capabilities for changing web pages dynamically and maintaining dynamic objects.

Flash memory is a type of electrically erasable programmable read-only memory (eeprom). Because flash
memories are nonvolatile and relatively dense, they are now used to store files and other persistent objects.
Flash, like earlier eeprom devices, suffers from two limitations. First, bits can only be cleared by erasing a large
block of memory. Second, each block can only sustain a limited number of erasures, after which it can no longer
reliably store data. Due to these limitations, flash file systems should use sophisticated data structures and
algorithms, which support efficient not-in-place updates of data, reduce the number of erasures, and level the
wear of the blocks in the device.

RTFS Architecture
1. Assumption

 Once a file is created, the file will only be appended and data in the file will not be modified.
 To keep the filesystem simple, we specify an upper bound on the maximum file size and the number of

entries in a directory (configurable).
 To provide time bounds on the filesystem access time, we also place an upper bound on the maximum

depth of the filesystem.
 We don’t need to maintain filesystem access rights, ownership, access timestamps etc in our filesystem.

2. Design Issues
 Not-In-Place Updates: Flash memory can be read or programmed a byte or a word at a time in a

random access fashion, but it must be erased a "block" at a time. Once a byte has been programmed, it
cannot be changed again until the entire block is erased. In other words, flash memory (specifically
NOR flash) offers random-access read and programming operations, but cannot offer random-access
rewrite or erase operations.

 Wear Leveling: Flash exhibits a unique property, in that each flash memory erase-unit can only endure a
limited number of erasures, typically about 10,000 operations. Repeated erasures to the same unit will
quickly exhaust the lifetime of a flash erase-unit. To ensure that no single flash unit reaches its lifetime
limit before the rest of the flash erase-units, it is important to ensure that erase-write cycles are evenly
distributed around the flash; a process normally called wear levelling.

 Erase Unit Reclamation: Over time, the flash device accumulates obsolete sectors and the number of
free sectors decreases. To make space for new blocks and for updated blocks, obsolete sectors must be
reclaimed. Since the only way to reclaim a sector is to erase an entire unit, reclamation (sometimes
called garbage collection) operates on entire erase units.

 Efficient RAM Usage: Filesystems designed for small embedded systems must content with another
challenge, extreme scarcity of resources, especially RAM. Hence the filesystem should be primitive file
system with low metadata overhead.

 Filesystem Consistency: Traditional file systems provide satisfactory performance in the transfer of data,
but power interruption or system failure can cause corruption of the file system, possibly rendering the
device inoperative. Hence our filesystem should ensure that the filesystem remains consistent across
power failures.

 Block Mapping: One approach to using flash memory is to treat it as a block device that allows fixed-size
data blocks to be read and written, much like disk sectors. However, mapping the blocks onto flash
addresses in a simple linear fashion presents two problems. First, some data blocks may be written to
much more than others, which leads to frequently-used erase units wearing out quickly, slowing down
access times, and eventually burning out. The second problem that the identity mapping poses is the
inability to re-write data blocks smaller than a flash erase unit. Suppose that the data blocks that the file
system uses are 4 KB each, and that flash erase units are 128 KB each. If 4 KB blocks are mapped to
flash addresses using the identity mapping, writing a 4 KB block requires copying a 128 KB flash erase-
unit to ram, overwriting the appropriate 4 KB region, erasing the flash erase unit, and rewriting it from
ram. These problem can be addressed by using a more sophisticated block-to-flash mapping scheme
and by moving around blocks.

3. Methodology
Our approach to the issues enlisted above was to either avoid the problem from occurring or by finding a
simplistic solution to the problem.

 We deliberately excluded some common file-system features that we felt were not essential for
embedded system, and which would have complicated the design or would have made the file system
less efficient. Hence we won’t maintain filesystem access rights, ownership, access timestamps etc in
our filesystem.

 We have made the assumption that once a file is created, the file will only be appended and data in the
file will not be modified. Further, we assume that a directory entry and file control block has fixed
number of pointers to data block. This makes our file system metadata static and hence the metadata is
never re-written into. Hence we avoid the problem of in-place updates and wear-levelling completely.

 Instead of using a linear block mapping technique our approach uses an efficient block apping
technique as described in Section 3.1.

 Also, the filesystem efficiently utilizes the RAM as it stores just a virtual-to-physical mapping table
explained in Section 3.1.

 Since we do not modify or create multiple copies of any existing data or metadata. Hence the filesystem
consistency is ensured.

 Finally, the issue of erase-unit reclamation can be considered as future work and beyond the scope of
the project. An efficient erase-unit reclamation algorithm can be easily incorporated in the existing
design as we maintain information about the obsolete sectors.

3.1 Efficient Block Mapping Technique
The entire flash memory is divided into erase-units. Each erase-unit can be visualized to be composed of fixed
sized sectors. Each sector can be uniquely identified by sector-number identifier. We also introduce the concept
of virtual block numbers. Each sector is mapped to a virtual block number there-by abstracting the physical
location of the sector. This enables file modifications and wear-leveling to be incorporated in the design if
desired.

Data Structures for Mapping:
 Direct Map: Direct Maps facilitate efficient mapping of virtual blocks to sectors by maintaining arrays

that store in the ith location the sector number that currently contains block i. Direct Maps are stored in
RAM.

 Inverse Map: Inverse Maps allow efficient mapping of sectors to virtual blocks. This is achieved by
storing the virtual block number in the sector header.

The indirect map is stored on the flash device itself and ensures that sectors can always be associated with the
virtual blocks that they contain. The main use of the inverse map is to reconstruct a direct map during
filesystem initialization. The direct map, which is stored in RAM, allows the system to quickly find the sector that
contains a given block.

Figure 1: Block mapping in a flash device. The gray array on the left is the virtual block to
physical sector direct map, residing in ram. Each physical sector contains a header and
data. The header contains the index of the virtual block stored in the sector. The virtual
block numbers in the headers of populated sectors constitute the inverse map, from which
a direct map can be constructed.

Sector Types:
Each sector can store one of the following information

 Directory Control Block (DCB): This sector would store the directory name and the fixed list of virtual
block pointers to the other directory control blocks or file control blocks. The value of the virtual block
entries is initialized to all 1’s (value after erasure of the erase-unit).

 File Control Block (FCB): Similar to DCB, FCB also store the filename and list of virtual block pointers to
the data blocks. The value of the virtual block entries is initialized to all 1’s (value after erasure of the
erase-unit). Note that the file size is not stored hence avoiding the need to modify the FCB as the file is
being written to. However, the size of the file can be calculated using the direct-map table at run-time.

 Data Block (DB): Data block just contains the data associated with the file. The data block which is not
full can be identified by the value 0xFFFF (the value after erasure of the erase-unit). Hence, if the data
contains 0xFFFF it should be delimited by an escape sequence. Using this we can calculate the file size
at filesystem initialization.

Sector Header:

Field Purpose

Used Bitmap To identify if the sector is free, in-use or obsolete

Virtual Block Number Inverse Map of Sector Number to Virtual Block Number

Block Type Differentiate between DCB, FCB and DB

Used Bitmap Virtual Block Number Comments

0xFFFF 0xFFFF Block is free

0xFFFF Value != 0xFFFF Block in use

0x0000 Don’t Care Block is obsolete

Direct Map Table Entry:

The direct map table is indexed by the virtual block number and contains the following fields.

Field Purpose

Sector Index Physical Sector Number corresponding to the Virtual Block Number

Sector Type Sector Type DCB, FCB and DB

Data Size Amount of valid data in the data block DB. Don’t care for DCB and FCB.

Filesystem Initialization:
During filesystem initialization, the direct map table is allocated in RAM and the size of this table is equal to the
total number of physical sectors. All the sectors are scanned sequentially and the direct map table is populated
using the inverse map entry in each sector. Also if the sector type is a Data Block, the data block is scanned to
find the amount of valid data in that data block. This information is also updated in the corresponding direct
map table entry.

Filesystem Framework:

Figure 2: Filesystem Framework

Filesystem APIs:
We are currently working on deciding the Filesystem APIs that we will be implementing on the project and will
be included in the next deliverable.

Individual Contributions
Since this project milestone involved working on the design of RTFS we chose to work together reading the
literature about Flash File Systems, Renesas MC16 Architecture, coming up with the design for RTFS, and
writing the project report.

Weekly Milestones
Week Date Milestone

Week 1 11/08/05 Decide upon filesystem APIs, data structures and implementation details

Week 2 11/15/05 Implementation of the Flash Driver Module

Week 3 11/22/05 Implementing File System APIs in the Virtual Filesystem Module

Week 4 11/25/05 Testing and Benchmarking

References
[1] FAT Filesystem http://users.iafrica.com/c/cq/cquirke/fat.htm
[2] Transaction-Safe FAT File System http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wcemain4/html/cmcontransaction-safefatfilesystem.asp
[3] Reliable File Systems for Windows CE
[4] Flash Filesystems for Embedded Linux Systems http://www.linuxjournal.com/node/4678/print
[5] TargetFFS: An Embedded Flash File System http://www.blunkmicro.com/ffs.htm
[6] Renesas M16C Architecture http://www.renesasinteractive.com

[7] Algorithms and Data Structures for Flash Memories http://www.cs.tau.ac.il/~stoledo/Pubs/flash-survey.pdf
[8] A Transactional Flash File System for Microcontrollers http://www.cs.tau.ac.il/~stoledo/Pubs/usenix2005.pdf
[9] ELF: An Efficient Log-Structured Flash File System For Micro Sensor Nodes

http://www.cs.colorado.edu/~rhan/Papers/sensys_elf_external.pdf

