
CSC 714 : Project Report 3

Gayathri TK Jayush Luniya

gtambar@ncsu.edu jrluniya@ncsu.edu

RTFS: Real Time File System

Project URL
 http://www4.ncsu.edu/~jrluniya/rt/

Abstract
Incorporating a web server to an embedded device provides a powerful mechanism allowing users to monitor
and control embedded applications using any standard browser. Web enabling devices provides a new method
of interfacing to devices that requires essentially no target side programming and works with universally
available, standard client software. The web server uses a file system to store embedded web pages in RAM,
flash, or on disk. File systems provide capabilities for changing web pages dynamically and maintaining dynamic
objects. Pages can be protected with password security to restrict both read and write access. Hence the need
for a real-time file system on an embedded device.
The goal of this project is to implement a Real Time File System (RTFS) for Renesas M16C board. RTFS is a
RAM-based file system which provides real time guarantees on file access times. The Renesas M16C board
typically acts as a base station for a cluster of sensor nodes and aggregates data to exchange across clusters.
By web-enabling the device, the data can also be available to other base stations and high-end machines in a
heterogeneous environment.

Implementation Details

Data Structures Used
1. Directory Control Block (DCB): The directory control block contains metadata about a directory. This

includes information about the files in the directory. The number of files in a directory is bounded by
MAX_FILE_ENTRIES parameter. The metadata for the subdirectories is maintained in separate DCBs. The
directory hierarchy is maintained as a tree as shown below:

typedef struct dirEntry_t
{
 char dirName[MAX_DIR_NAME_SIZE]; // Directory Name
 FileEntry files[MAX_FILE_ENTRIES]; // File Control Block Entries
 struct dirEntry_t *leftChild; // Leftmost Child
 struct dirEntry_t *rightSibling; // Next subdirectory at the same level.
}DirEntry, *DIRENTRY;

2. File Control Block (FCB): The file control block contains the metadata about a file. In order to reduce

filesystem overhead, the FCB’s are maintained inside the DCBs itself. We maintain an upper bound on the
file size (NUM_BLKS_PER_FILE * DATA_BLK_SIZE)

typedef struct fileEntry_t
{
 unsigned int fileSize; // File Size
 char fileName[MAX_FILE_NAME_SIZE]; // File Name
 int dataBlocks[NUM_BLKS_PER_FILE]; // File data Blocks
 BOOL isValid; // File Entry is valid
}FileEntry, *FILEENTRY;

3. File Descriptor: File descriptor contains information about the open files in the system. Typically it contains

information about the file it refers to and current read position. Since our file system supports writes only in
append mode, there is no need for an explicit write pointer.

typedef struct fileDesc_t
{
 DIRENTRY dir; // Directory in which the file exists
 int fileIndex; // Index to the appropriate file entry in the DCB
 unsigned int readPos; // Read Pointer
 BOOL free; // File Descriptor is free
}FileDesc, *FILEDESC;

4. Filesystem Superblock: The filesystem superblock contains information about the filesystem itself like the
pointer to the DCB of root, array of file descriptors and information about the free data blocks in the system.

typedef struct superBlock_t
{
 FileDesc fileDescriptor[MAX_FILE_DESC]; // File Desc Array
 int fdIndex; // Start index to search for free file desc
 char data[MAX_DATA_BLKS][DATA_BLK_SIZE]; // Data Blocks
 char dataBitmap[DATA_BITMAP_SIZE]; // Free/Allocated Data Block Bitmap
 DIRENTRY root; // Pointer to Root DCB
}SuperBlock;

Filesystem APIs
RTFS filesystem supports the following APIs:

Directory Functions:
 int f_mkdir(char *pathName)

 Description: Create a new directory. Pathname should be absolute.
 Return Value: Returns 0 on success, -1 on error.

 int f_rmdir(char *pathName)

 Description: Remove an empty directory entry. Pathname should be absolute.
 Return Value: Returns 0 on success, -1 on error.

File Control Functions:

 int f_creat (char *pathName)

Description: Create a new file entry. Pathname should be absolute. f_create also allocates a new file
descriptor.

 Return Value: Returns file descriptor number on success, -1 on error.

 int f_remove (char *pathName)

 Description: Remove the file entry. Pathname should be absolute.
 Return Value: Returns 0 on success, -1 on error.

File Access Functions:
 int f_open (char *pathName)

Description: Open a file. Pathname should be absolute. We do not maintain the filesystem. We don’t
have any concept of file modes (read-only, write-only, read/write etc).

 Return Value: Returns file descriptor number on success, -1 on error.

 int f_close(int fd)

Description: Close an open file.
 Return Value: Returns 0 on success, -1 on error.

 int f_read(int fd, void *buf, int count)

Description: Read up to count bytes from file descriptor fd into the buffer starting at buf

Return Value: On success, the number of bytes read is returned (zero on EOF), -1 on error.

 int f_write(int fd, void *buf, int count)

Description: attempts to write count of data to the object referenced by the descriptor fd from the
buffer pointed to by buf.

Return Value: On success, the number of bytes written is returned, -1 on error.

Mini shell
To test the filesystem APIs we implemented a mini shell that supports the following commands:

 mkdir Command to create a new directory
 rmdir Command to remove an empty directory
 touch Create a new file with file size = 0
 remove Remove a file
 cat Reads a file sequentially and writes to standard output.
 append Appends to a file
 cd Change Present Working Directory (PWD)
 ls View PWD directory contents
 exit Exit the shell

Open Issues

 Porting Issues – The present filesystem APIs have been tested using a mini-shell as a standalone
application. We are currently working on issues and changes required for porting the filesystem to the
Renesas board and testing it using the mini-shell on that board.

 Real Time Guarantees – Although the filesystem has been designed keeping real time issues in mind,
we have to work on specifying the worst case bounds on file operations.

Individual Contributions
Both the team members made equal contribution towards this project milestone.

Task Contributor

Data Structure Design Gayathri, Jayush

File System APIs : mkdir, rmdir, read, write Gayathri

File System APIs : creat, remove, open, close Jayush

Shell Commands: mkdir, append, cd, ls Gayathri

Shell Commands: rmdir, touch, remove, cat Jayush

Weekly Milestones
Milestones Date Milestone

Milestone 1 Oct 1- Oct 15 Decided on project topic; Came up with project proposal.

Milestone 2 Oct 15- Nov 1 Worked on the Design issues of the project

Milestone 3 Nov 1 - Nov 15 Came up with file system Datastructures; Implemented basic file system
APIs; Implemented a mini shell to test the file system APIs; Report

Milestone 4 Nov 15 – Nov 22 Have to work on porting the filesystem to Renesas M16C Board; Provide
real time guarantees on file access times.

Milestone 5 Nov 22 – Nov 30 Test and benchmark the filesystem

References
[1] FAT Filesystem http://users.iafrica.com/c/cq/cquirke/fat.htm
[2] Transaction-Safe FAT File System http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wcemain4/html/cmcontransaction-safefatfilesystem.asp

[3] Flash Filesystems for Embedded Linux Systems http://www.linuxjournal.com/node/4678/print
[4] TargetFFS: An Embedded Flash File System http://www.blunkmicro.com/ffs.htm
[5] Renesas M16C Architecture http://www.renesasinteractive.com

[6] Algorithms and Data Structures for Flash Memories http://www.cs.tau.ac.il/~stoledo/Pubs/flash-survey.pdf
[7] A Transactional Flash File System for Microcontrollers http://www.cs.tau.ac.il/~stoledo/Pubs/usenix2005.pdf
[8] ELF: An Efficient Log-Structured Flash File System For Micro Sensor Nodes

http://www.cs.colorado.edu/~rhan/Papers/sensys_elf_external.pdf

