CSC 714 Project Report 2

Nachiket S Deshpande
nsdeshpa@ncsu.edu

“Study of memory leakage on an IBM PowerPC 405LP Embedded
Processor and ways to reduce energy consumption, by combining sleep
and low-power modes.”

Project URL: http://www4.ncsu.edu/~nsdeshpa/project.html

Solved Issues

Code was refined by removing unnecessary printf’s from the signal
handler, clock() was replaced by gettimeofday(), and sigaction() was
successfully tested and integrated in the code.

A problem was found regarding the timer granularity associated with
application-level timers provided in Linux. The smallest granularity that
can be handled is 10ms. Any value lower than this reports results similar
to that of 10 ms. The same was observed for 20 ms, 30 ms, etc.

Two approaches to tackle this problem were brought out:

a) Use the on-board PIT to refine the granularity to 1ms and even
lower.

b) Patching the existing Linux distribution with KURT Linux (a project
undertaken by Kansas University for overcoming the 10ms
granularity problem associated with Linux kernel timers, using
functions like nanosleep, etc.)

Successfully combined two separate programs (temp.c which writes into
pm_alarm) and signal.c (which simulates the timers) into one single code
file, which puts the system to sleep and on waking up, triggers the timers
and measures the overhead). Small bugs in it are being worked out right
NOW.

Currently, an attempt is being made to synchronise the two timers (the
internal one which wakes up the system and the setitimer programmed by
the user — as it is being seen that the overheads reported are different
when one varies the sec and the usec fields of it_value, (which controls
the time when the first interrupt is generated), in the alarm calling
function. This is being worked upon right now.

Simulated alarm generating function both under “fully-awake” (before
going to sleep) and during the asleep to waking up transition. It was
noted that alarm interrupts arrive precisely at or around 10ms in the fully
awake status, but they do not arrive on time when the system is in
transition from asleep to fully awake. It is seen that the first interrupt and



the second one are mismatched, indicating that the system is fully waking
up between the first interrupt and the second (1% 10ms interrupt). So,
wakeup overhead (worst-case = 10ms currently). If we compare the
differences between the times of the interrupts for the fully awake and
the transition phase, we see a difference, which is the wakeup overhead.
Thus, the total wakeup overhead will be = overhead associated with 1%
interrupt plus overhead associated with the 1%t 10ms interrupt.

e The next step would be to refine this 10ms granularity to 1ms or lower,
using either the PIT or a software-based solution (on the lines of KURT
linux).

Open Issues

e Refining the granularity to 1ms and lower by going on to the hardware
level and using the PIT on the board and then finding the new, refined
overhead.

e Exploring the KURT Linux angle and trying out the overhead
measurements with this new functionality.

e Putting this functionality into a system call and seeing which approach
would be better (programming the /proc interface VS doing it with a
system call)

e Integration with DVS and further experimentation

Next Steps
e Getting a 1ms granularity (by Nov 18)
e System call implementation (by Nov 22)

e Further experimentation and final sleep overhead reporting (by Nov
28)



