
CSC714 Project Report 3

Android WIFI Social Network

Team:
Phil Marquis - ppmarqui

Sushmita Lokala - slokala

Project URL : http://www4.ncsu.edu/~ppmarqui/csc714/

Proposed Project:

We have used a Google Android phone (the HTC G1) to implement a scheme for sharing
local wifi signal strength among other Android users.

A user's phone is able to publish the signal strength of wifi networks in the area to a
centralized server. Other Android users are able to view this information if a better wifi
location is desired. Wifi data are be presented on a Google Map, to indicate other users'
wifi statuses.

Outline:

For the sake of simplicity, we have chosen a linear execution path:

1. Get wifi signal strength of the current location.
2. Read the current location in terms of longitude and latitude using the phone's GPS
hardware.
3. Read friends' wifi signal/location history from disk.
4. Send updated wifi/location data on the server.
5. Retrieve friends' history from the server.
6. Save this information on the disk to display it the next time the application runs. This
is helpful when the user is in a place without internet access and cannot connect to the
server. The most recently updated set of friends' data will be displayed, so that a wifi
connection can be located nearby.
7. Display the user history data on a Google Map, with a unique color for each user. The
map will display the user's name, the name of the wifi network with the strongest signal,
and the signal strength on a scale from 0 (weakest) to 10 (strongest).

http://www4.ncsu.edu/~ppmarqui/csc714/

Detailed Description:

Step 1:
The android SDK provides a WifiManager class that allows our application to scan for
all wifi networks in our current location. From the Results retrieved by the ScanResult
object of this class, we store all available networks and their signal strengths in a data
container.

Our data container classes consist of several layers of detail to facilitate the handling of
a user's wifi history. The WifiNetwork class is very much like the ScanResult class,
containing a wifi network's SSID and signal level. The WifiData class encapsulates
several WifiNetwork objects along with a location at which these networks were
assessed. Finally, the WifiUserHistory object provides a means for tracking the locations
that a user has visited by maintaining a collection of WifiData objects. All of these
classes implement the Serializable interface, so that they can be serialized for the
purposes of reading/writing from/to disk and for server communication.

Step 2:
We procure the longitude and latitude readings from the G1's GPS hardware using the
Location class. The method getLastKnownLocation() returns the coordinates of the
phone at the last successful GPS retrieval.

Unfortunately this GPS functionality does not perform as well as expected. The phone
struggles to obtain GPS coordinates, so the user's location may be slightly out of date. In
addition, the GPS function is very slow and maybe be a significant burden on our
application's run time. That is, pausing while the phone determines its location may
result in unacceptable delays in execution.

If the phone were connected to a cellular network, it would most likely be able to utilize
Assisted GPS technology. That is, the phone uses the GPS system in conjunction with a
cellular provider's towers to determine its location far more quickly.

Step 3:
The application will read a serialized array of WifiUserHistory objects from the phone's
file system. This object is the most recent set of friends' data that was obtained from the
server. These data are available for display even if an internet connection is unavailable.

In our current implementation, the code assumes that this object already exists on the
file system. The first time the application is run, the code to save some dummy data to
disk must be manually invoked (by uncommenting it in Main.java).

Step 4:

After we have obtained our coordinates and the current status of any wifi networks at the
present location, we update the user's WifiUserHistory and send it to the server. The
server finds the user's name in its cache and updates the data.

Step 5:
The phone sends a request to the server for the friends' data. The response is a UDP
packet that contains all of the WifiUserHistroy objects on the server.

Step 6:
If we have successfully received updated data from the server, we will save it to the disk
for future use. This is done by serializing the aforementioned array of WifiUserHitory
objects.

Step 7:
The Android SDK provides a MapView class to display a Google Map. We have a zoom
Controller on the map to zoom in/out on the map. We have defined a class called the
WifiOverlay that stores the wifi history of all the friends in a HashMap. This class
extends the Overlay class in the SDK and overrides the draw method to display ovals
and text (for the user name and signal information) in all the places recorded for that
particular friend. To make out display more user friendly, we have assigned different
color codes to each user's overlay.

Results

A screen shot of our application:

Milestones

Task Assigned Deadline

Install Eclipse+SDK on Linux Phil April 1
Install Eclipse+SDK on Windows Sushmita April 1
Research WifiManager and obtain
wifi data, displayed to screen.
Obtain current Location Geopoint
from GPS server.

Sushmita April 1

Evaluate WAMF and Google
Latitude

Phil April 1

Create wifi data container classes
and serialize locally/remotely

Phil April 8

Display name, location, and wifi
data via Google Maps overlay

Sushmita April 8

Phase 1: Store wifi data +
geographical data in a local data
structure (on phone)

Phil April 8

Phase 1: Display data as Google
Maps overlay

Sushmita April 8

Phase 2: Post wifi data structure to
server

Phil April 15

Phase 2: Retrieve wifi data
structure from server and display
locally

Sushmita April 15

Prepare presentation & final report Phil+Sushmita April 21

Future Work

The application in its current form represents a proof-of-concept for the wifi social
networking concept. As a result, some of the features are somewhat crude and should be
improved in the future.

Much of the code is inflexible and is hardwired for lack of a better solution, given the
time constraint of the project schedule. The user must hard-code the IP of the server
inside the code, so an interface for specifying a server URL is needed. In addition, the
server does not authenticate the Android user and all of the wifi data on the server is
public.

Therefore, the server side should be improved. Because this is an Android project, the
Googe Apps interface would be an ideal solution. The user could log into their Google
user account, which would provide the desired authentication. The server side would
also restrict access to those who are acquainted with another user, perhaps by utilizing
Gmail contacts and coordinating with the G1's contact list. Such a system would also
eliminate the problem of data storage: on our application's server side, all of the wifi
history data is simply stored in memory. A more robust solution would save the data to
disk or inside an SQL database.

Our application's user interface could be improved by the addition of a menuing system
for user options. Along these lines, an interface for manually recording the wifi status
could be devised, rather than simply updating data automatically each time the
application is opened. Finally, the user will most likely desire additional information
about the wifi networks at a particular location. Rather than simply the signal strength of
the “best” network, other data could be shown as well: all of the available networks and
their respective encryption status. Perhaps Google Maps text bubbles would
conveniently show such information. The existing framework of the application can be
extended to include these features.

References & Credits

1.http://www.howtoforge.com/installing-google-android-sdk1.0-on-ubuntu8.04
desktop http://www.google.com/mobile/default/latitude.html

2.http://developer.android.com/reference/packages.html

3.http://moss.csc.ncsu.edu/~mueller/g1/

4.http://blogoscoped.com/archive/2007-11-19-n27.html

5.http://mobiforge.com/developing/story/using-google-maps-android

http://mobiforge.com/developing/story/using-google-maps-android
http://blogoscoped.com/archive/2007-11-19-n27.html
http://moss.csc.ncsu.edu/~mueller/g1/
http://developer.android.com/reference/packages.html
http://www.google.com/mobile/default/latitude.html
http://www.howtoforge.com/installing-google-android-sdk1.0-on-ubuntu8.04-desktop
http://www.howtoforge.com/installing-google-android-sdk1.0-on-ubuntu8.04-desktop
http://www.howtoforge.com/installing-google-android-sdk1.0-on-ubuntu8.04

	Results
	Milestones
	Task
	Assigned
	Deadline

