
MAC Protocol Implementation on Atmel AVR

for Underwater Communication

- Final Report-

 Shaolin Peng

speng2@ncsu.edu

Introduction

Underwater acoustic communication is widely used in many areas to collect the data
from different kinds of sensors deployed underwater or send control information to
remote nodes. However, there are many challenges for underwater communication
systems because of the characteristics of acoustic propagation in the underwater
environment, such as Doppler spread, ambient noise, fading, high propagation delay,
limited bandwidth, wave effect and multipath. MAC protocol, as a developed protocol for
Ethernet networks, has been introduced into underwater communication by many
researchers and lots of work has been done on the improvement of MAC protocol for
throughput and energy efficiency purposes. In general, MAC protocols can be roughly
divided into two categories: contention-free protocols and contention-based protocols.
Contention-free protocols include TDMA,FDMA and CDMA, where communication
channels are separated in time, frequency or code domains. It is common wisdom that
FDMA is unsuitable for underwater sensor networks because of the narrow available
bandwidth. There are some researches on TDMA and CDMA for underwater networks.
However, some problems inherent in these methods have not been well addressed in
acoustic networks. For example, the synchronization problem in TDMA and near-far
problem in CDMA. Thus, the feasibility of these protocols in underwater sensor networks
is unclear. Contention-based protocols includes random access methods and collision
avoidance methods. In a random access protocol, e.g., Aloha, the sender sends packets
without coordination. Thus packet avoidance is totally probabilistic. While in a collision
avoidance protocol, the sender and receiver capture the medium through control packet
exchange before data transmission. There are many collision avoidance protocols, among
which RTS/CTS-based protocols are widely used. The performance of random access
methods and RTS/CTS-based approaches in underwater sensor networks is determined
by many factors. In this implementation, I developed Aloha and RTS/CTS-based MACA
protocols on a Atmel AVR device in our targeted underwater network and evaluated their
performance in the shallow water.

Hardware Overview

The device used for this implementation is a mini transceiver based on Atmega168. This
mini transceiver is 1.5 x 2.5 inches, as shown below (Fig 1 &2). It is battery-powered and
could transmit and receive up to four different frequencies with a transducer connected.
These transducers communicate underwater by ultra-sound. It has three switches, a small
display and three LEDs. Atmega168 employed in this implementation is a high-

performance, low power AVR 8-bit microcontroller, with 1K RAM and 8K ROM. It has
24 MIPS throughput at 24 MHz.

 Figure 1. transceiver with display Figure 2. transceiver without display

Protocol Study

There are lots of research on the underwater communication protocols. In [9] the
relationship between transmission loss and typical channel parameters, such as sound-
speed gradient, sea bottom fluctuation, source depth and propagation distance is studies,
which provides a guide to design a practical device design and to choose a suitable
protocol. An analysis of the challenges of modeling contention-based medium access
control protocols was reported in [4] and it identified several issues complicating such
contention-based protocols. This implies that the contention-based protocols with carrier-
sense such as CSMA, may not be a good choice considering the nature of the wireless
medium. It presented a model to analyze the suitability of Aloha variant protocols. Pure
Aloha and slotted Aloha are compared and studied in [5]. Their results were from
Qualnets simulator. They indicated that the performance of Aloha and Slotted Aloha is
about the same due to that long propagation delay of acoustic signals prohibits the
coordination among nodes. The random access and RTS/CTS techniques were studied in
[6]. Its results showed that random access is better than RTS/CTS for sparse network
with low data rate and non-bursty traffic.

Besides, different from deep water acoustic communication, there are more problems for
shallow water communication, such as long delay-spread due to sparse multi-path arrivals
and rapid time-varying channel. A much closer study focusing on shallow water was
conducted in [8]. It implemented three variant of MAC protocols in data link layer, which
are simple Aloha, Aloha with ACK and retries, and MACA using RTS/CTS. From its
results, Aloha with ACK has a better performance for smaller packet size (<500 bytes)
and less nodes while MACA overcomes for larger packet size and denser networks.

Based on these study on existing protocols, Aloha is more suitable for our case. In our
case, the underwater network is relatively small and sparse. The application packet size is
not large. As is usually the case in many commercial acoustic modems/transceivers, the
physical layer in our device is a half duplex system, which means listening while
transmitting is not possible. It does not transmit while reception is in progress and does
not receive while transmitting. From the above analysis, Aloha with ACK is a good

choice. However, I implemented RTS/CTS-based MACA as well to make a comparison
with Aloha.

Protocol Implementation

The basic idea of an Aloha system is simple: senders transmit whenever they have data to
be sent. Sender waits for a maximum Round Trip Time (RTT) for an ACK. If there is no
ACK back, the sender just waits a random amount of time and resends it. The waiting
time must be random or the same frames will collide over and over. At the receiver end,
it sends an ACK to the sender if the received packet is error free. Figure 2 is a state
diagram. The system will model three layers of the OSI stack - Network, data link, and
Physical. Network layer generates the packet to data link layer or gets the packet from
data link layer. Data link layer follows the state diagram to process the packets. Physical
layer is responsible to encode and send signals, or receive and decode signals.

Figure 2. Aloha State Diagram

For MACA protocol the transmitter sends RTS first to the destination, and upon receiving
a CTS back, it then sends its data packet to the receiver. And, it requests an ACK after
the correct data, which can reduce the waiting time of retransmission. The basic idea is
listed below.

A B

RTS

CT

DAT

ACK

C

RTS

Keep silent for
the coming CTS,
but free to
transmit while
the data frame is
being sent

D

CTS

Defers sending
anything until
that frame is
expected to be
finished

ALOHA protocol pseudo code:

if databuffer is not empty
 compose and send a packet;
listening in the channel for a period (period = wait)
 if received a packet in a period(time<wait)
 if the packet’s destination matches with the its device ID,
 if it is an ACK
 Succeed. Check the databuffer
 if not empty, compose and send next packet
 set ‘wait’ to round trip time
 else if it is a DATA
 if CRC is right
 put data to RX databuffer

compose and send an ACK packet to this node
else CRC is wrong

 drop the packet, set ‘wait’ to round trip time
 else if there is an error
 drop the packet, set ‘wait’ to round trip time
 else if the packet’s destination doesn’t match with its device ID
 if it is an ACK
 do nothing
 else if it is a DATA
 keep silent for the ACK to be sent back
 else if period ends (time==wait)
 send the same DATA packet to the same node

set ‘wait’ to a random time+RTT

MACA (RTS/CTS) protocol pseudo code:

if databuffer is not empty
 compose and send a packet;
listening in a period (period = wait)
 if received a packet in a period(time<wait)
 if the packet’s destination matches with the its device ID,
 if it is an ACK
 Succeed. Check the databuffer
 if not empty, compose and send next packet
 set ‘wait’ to round trip time
 set status=STATUS_WAIT_CTS;
 else if it is a DATA
 if CRC is right

put the data to RX databuffer
compose and send an ACK packet to this node

else CRC is wrong
 drop the packet, set ‘wait’ to RTT
 else if it is a RTS
 compose and send a CTS to this node
 else if it is a CTS
 compose and send a DATA packet to this node
 set status=STATUS_WAIT_ACK;
 else
 set ‘wait’ to round trip time
 else if the packet’s destination doesn’t match with its device ID
 if it is an ACK
 do nothing
 else if it is a DATA
 keep silent for the ACK to be sent back

set ‘wait’ to one way time
 else if it is a RTS

Keep silent for the coming CTS, but free to transmit while the
data frame is being sent, set ‘wait’ to one way time

 else if it is a CTS
Keep silent for the coming DATA. Defers sending anything until
that DATA is finished by some other node.
set ‘wait’ to (one way time + data transmission time)

 else if period ends (at time==wait)
 if status == STATUS_WAIT_CTS
 send the same RTS packet to the same node

set ‘wait’ to a random time+RTT
 else if status == STATUS_WAIT_ACK
 send the same DATA packet to the same node

set ‘wait’ to a random time+RTT

Packet Format
 ALOHA:
 Data Packet

ID
(4 bits)

Dest
(4 bits)

Source
(4 bits)

Length
(4 bits)

Data
(8*n bits)

 CRC
(8 bits)

ACK
ID
(4 bits)

Dest
(4 bits)

Source
(4 bits)

MACA(RTS/CTS):
Data Packet

ID
(4 bits)

Dest
(4 bits)

Source
(4 bits)

Data
(8*n bits)

 CRC
(8 bits)

RTS/CTS
ID
(4 bits)

Dest
(4 bits)

Source
(4 bits)

Length
(4 bits)

ACK
ID
(4 bits)

Dest
(4 bits)

Source
(4 bits)

For the aloha, the data packet has a ID field, which tells the packet type (Data or ACK), a
Dest field, which tells the packet destination, a source field, which tells where the packet
is from, a length field, which tells the data length, and a CRC field, which is used to
check if the data packet is correct. The ACK packet is pretty simple, which only contains
ID, Dest and Source.

For MACA protocol, the data and ACK packets are similar as Aloha. The difference is
the RTS and CTS packet have a length filed, which is used to notify the destination the
data size and notify the other nodes how long they should keep silent.

The CRC in the packet is a Polynomial Code to make sure there is no data error in the
packet, otherwise, the sender will send that packet again. Here I use generator
G(x)=x8+x2+x+1 ->(100000111)

I didn’t use error correction mechanism in the data link layer, only focusing on the
estimation of protocol performance at this initial implementation. However, the
convolutional algorithm could be used in the data link layer as the future work.

System Implementation

The operating system or even some schedulers are too complex and expensive for this
device. The code size has to be compact due to the limitation of this microcontroller. I
use a Round-Robin scheduling for the protocol implementation, with interrupt enabled.
The application tasks could be serviced in the loop or be configured as an ISR. They can
put the data into TX data buffer. The transmitting task will check if there is any data to
send in the data buffer.

The listening task will keep checking the channel if there is a coming packet. If there is a
coming packet, the listen task will end earlier, otherwise it will return at the end of the
specified period.

The transceiver device is a half- duplex system as is usually the case in many acoustic
nodes, which means listening while transmitting is not possible. So when it is
transmitting, it shouldn’t be interrupted by any events so the interrupt is disabled during
that time and incoming packets will be lost due to this half-duplex mode.

Example:

While(true){

if(Databuffer!=Empty)
 Transmit();
 if(TaskReadytoRun)
 Task();
 if(RequestforISR)
 ISRtask();
 ListenChannel();
…
}

Interrupt ISR();
…

Transmit and listen are protocol layer functions which will call TX & RX separately. The
TX and RX are the interfaces and they will call physical layer functions to send or
receive the signals. The Goertzel algorithm is employed in the implementation, to
indentify the frequency component from a signal since the transceiver doesn’t have any
tone decoder. It is implemented in receiver function of physical layer.

TX
Data
Buffer

Transmit

RX
Data
Buffer

Listen

TX Interface

User
Tasks Signal Out

Signal In

RX Interface

Receive

Send

Figure 3. Function Call Graph

Menu System

There is a menu system in the implementation, from which I can easily choose Aloha or
MACA to test the performance. It also includes some other functions, such as save data,
display results or change configuration. This system is extendable.

EEPROM

In order to save space and reduce the workload on debugging, I put lots of information to
EEPROM, such as node ID, Goertzel coefficient table. At the beginning of the program,
these values will be read into memory. With the node ID hard coded in the EEPROM, all
the nodes could share the same .hex file, otherwise every time the code is modified, I
have to create different versions for different nodes. Besides, when the program is done
after the tests, I save all the results into a particular address of EEPROM. We can retrieve
the results even from a careless power-off or do post-processing later.

Experiments

To estimate the protocol performance in this small network, I focus on the throughput,
which is defined as successful received packets divided by total transmitted packets in
our case. I built a simple grid network and each node unicasted the packets to all the other
three nodes sequentially. In the end, I collected the successfully received packets from all
four nodes within a period.

The tests were conducted both indoors and outdoors. For indoor test, I put the transducers
next to each other in the same mug. The outdoor test was done in the Lake Raleigh. The
transducers were separated about 50~100 feet from each other. In order to estimate the
throughput of the protocols, in my test I use the worst case scenario, in which all nodes
have their data ready to send from the very begging, and the data is unlimited during the
test time. The data speed is 250bps (40ms to send a bit).

Results

Below are the test results.
Lab test:
Aloha Throughput=27.2%

RX packet TX packet TXACK RXACK
34 125 17 14

MACA Throughput=20%

RX Data TX Data RX ACK TX ACK TX RTS TX CTS RX RTS RX CTS
17 95 13 17 51 36 36 27

Lake test:
Aloha Throughput=8.1%

RX packet TX packet TXACK RXACK
10 123 10 6

MACA Throughput=8.2%
RX Data TX Data RX ACK TX ACK TX RTS TX CTS RX RTS RX CTS
5 61 3 5 33 9 9 6

From the above results, we can see the overall throughputs for both protocols are not very
good because in this worse case scenario, there are lots of collisions when all the nodes
have infinite data to send. Both protocols have a better performance for indoors tests than
outdoors, the reason is that the situation for the outdoors test is much worse than indoors
due to lots of noise and interference introduced by wind, wave and motors.

Clearly, Aloha has a better performance than MACA in lab test but the performance
decreases more than MACA when moving to a worse environment, which tells us the
interference effects Aloha more than MACA.

Another fact here in these tests is that, during the fixed testing time Aloha could transmit
as more as twice data than MACA. So from this point Aloha is a better choice for a small
and sparse network.

Some thoughts to improve the protocol

Aloha could be improved to bring more throughput in some cases. For example, if one
node gets a packet correctly, we could let it keep waiting for another RTT period instead
of sending out its ready data, given the assumption that each time there are more than one
packet need to be sent to another node. In this way, there will be less collisions. This will
cause temporary starvation and delay the task for one node, but both of the two nodes
could finish their transmission tasks in a shorter time.

Current implemented MACA is a little aggressive, because if a receiver gets a data packet
but with errors (CRC fails), it will drop the data packet and send its packets if waiting
time ends. But we can change the protocol to make the receiver wait for another RTT
period in the case that CRC checking fails, because we assume the sender will send the
data packet again without an ACK from the receiver. In the way, there will be less
collision happening for the next transmission. I did a simple test in the lab by changing
the protocol a little bit, and the result came out as follows:

Improved MACA:
RX Data TX Data RX ACK TX ACK TX RTS TX CTS RX RTS RX CTS
20 65 15 19 43 32 32 26

MACA Throughput=29.0%
By comparing these numbers with the previous MACA, we can see that there is a big
improvement on the throughput, even better than Aloha, although the transmitted data
amount during the testing period is still less than Aloha.

Another similar idea on MACA is to use NAK as another type of acknowledgement to
tell the sender to send the data again. This could help the sender reduce the waiting time
in some cases. So basically, by adding new designs, I think MACA could be improved as
well to be used in the small and sparse network.

Another observation is, lots of packets are dropped due to CRC error, so if we can correct
those errors, then not only we can reduce the collisions, but also we can save more energy.
So, in the future work, it is better to implement error correction algorithm for
communication, e.g. convolutional encoding (viterbi coding). For the unreliable
underwater communication, this could be a great help.

References:

[1] A_an Syed, Wei Ye, Bhaskar Krishnamachari, John Heidemann. Understanding
Spatio-Temporal Uncertainty in Medium Access with ALOHA protocols. WUWNeT '07,
Sep 2007.
[2] B. Peleato and M. Stojanovic. A MAC Protocol for Ad-Hoc Underwater Acoustic
Sensor Networks. WUWNeT '06, Sep 2006.
[3] D. Makhija, P. Kumaraswamy and R. Roy. Challenges and Design of Mac Protocol
for Underwater Acoustic Sensor Networks. WIOPT '06, April 2006.
[4] J.H. Gibson, G.G. Xie, Y. Xiao, and H. Chen. Exploring Random Access and
Handshaking Techniques in Large-Scale Underwater Wireless Acoustic Sensor Networks.
in Proc. MTS/IEEE Oceans Conference 2007, June 2007.
[5] Uichin Lee Luiz Filipe M. Vieira, Jiejun Kong and Mario Gerla. Analysis of aloha
protocols for underwater acoustic sensor networks. MobiCom '06, Sep 2006.
[6] Peng Xie, and Jun-Hong Cui. Exploring Random Access and Handshaking
Techniques in Large-Scale
Underwater Wireless Acoustic Sensor Networks. OCEANS '06, Sep 2006.
[7] Peng Xie, and Jun-Hong Cui. R-MAC: An Energy-E_cient MAC Protocol for
Underwater Sensor
Networks. WASA'07, Aug 2007.
[8] Shiraz Shahabudeen, Mandar Anil Chitre. Design of networking protocols for shallow
water peer-to-peer
acoustic networks. OCEANS '05, June 2005.
[9] Xiaomei Xu, Feng Tong, Liuhuai Qing, Yi Tao. Characterization of Wireless
Shallow-water Communication Channel Based on Gaussian Beam Tracing. WiCOM '06,
Sep 2006.
[10] Zhong Zhou, Zheng Peng and Jun-Hong Cui. Multi-channel MAC Protocols for
Underwater Acoustic Sensor Networks. WuWNet '08, Sep 2008.

	MAC Protocol Implementation on Atmel AVR
	for Underwater Communication
	- Final Report-
	System Implementation

