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Introduction 

Underwater acoustic communication is widely used in many areas to collect the data 
from different kinds of sensors deployed underwater or send control information to 
remote nodes. However, there are many challenges for underwater communication 
systems because of the characteristics of acoustic propagation in the underwater 
environment, such as Doppler spread, ambient noise, fading, high propagation delay, 
limited bandwidth, wave effect and multipath. MAC protocol, as a developed protocol for 
Ethernet networks, has been introduced into underwater communication by many 
researchers and lots of work has been done on the improvement of MAC protocol for 
throughput and energy efficiency purposes. In general, MAC protocols can be roughly 
divided into two categories: contention-free protocols and contention-based protocols. 
Contention-free protocols include TDMA,FDMA and CDMA, where communication 
channels are separated in time, frequency or code domains. It is common wisdom that 
FDMA is unsuitable for underwater sensor networks because of the narrow available 
bandwidth. There are some researches on TDMA and CDMA for underwater networks. 
However, some problems inherent in these methods have not been well addressed in 
acoustic networks. For example, the synchronization problem in TDMA and near-far 
problem in CDMA. Thus, the feasibility of these protocols in underwater sensor networks 
is unclear. Contention-based protocols includes random access methods and collision 
avoidance methods. In a random access protocol, e.g., Aloha,  the sender sends packets 
without coordination. Thus packet avoidance is totally probabilistic. While in a collision 
avoidance protocol, the sender and receiver capture the medium through control packet 
exchange before data transmission. There are many collision avoidance protocols, among 
which RTS/CTS-based protocols are widely used. The performance of random access 
methods and RTS/CTS-based approaches in underwater sensor networks is determined 
by many factors. In this implementation, I developed Aloha and RTS/CTS-based MACA 
protocols on a Atmel AVR device in our targeted underwater network and evaluated their 
performance in the shallow water. 
 
Hardware Overview 

The device used for this implementation is a mini transceiver based on Atmega168. This 
mini transceiver is 1.5 x 2.5 inches, as shown below (Fig 1 &2). It is battery-powered and 
could transmit and receive up to four different frequencies with a transducer connected. 
These transducers communicate underwater by ultra-sound. It has three switches, a small 
display and three LEDs. Atmega168 employed in this implementation is a high-



performance, low power AVR 8-bit microcontroller, with 1K RAM and 8K ROM. It has 
24 MIPS throughput at 24 MHz. 

                  
  Figure 1. transceiver with display      Figure 2. transceiver without display 
 
 
Protocol Study 

There are lots of research on the underwater communication protocols. In [9] the 
relationship between transmission loss and typical channel parameters, such as sound-
speed gradient, sea bottom fluctuation, source depth and propagation distance is studies, 
which provides a guide to design a practical device design and to choose a suitable 
protocol. An analysis of the challenges of modeling contention-based medium access 
control protocols was reported in [4] and it identified several issues complicating such 
contention-based protocols. This implies that the contention-based protocols with carrier-
sense such as CSMA, may not be a good choice considering the nature of the wireless 
medium. It presented a model to analyze the suitability of Aloha variant protocols. Pure 
Aloha and slotted Aloha are compared and studied in [5]. Their results were from 
Qualnets simulator. They indicated that the performance of Aloha and Slotted Aloha is 
about the same due to that long propagation delay of acoustic signals prohibits the 
coordination among nodes. The random access and RTS/CTS techniques were studied in 
[6]. Its results showed that random access is better than RTS/CTS for sparse network 
with low data rate and non-bursty traffic.  
 
Besides, different from deep water acoustic communication, there are more problems for 
shallow water communication, such as long delay-spread due to sparse multi-path arrivals 
and rapid time-varying channel. A much closer study focusing on shallow water was 
conducted in [8]. It implemented three variant of MAC protocols in data link layer, which 
are simple Aloha, Aloha with ACK and retries, and MACA using RTS/CTS. From its 
results, Aloha with ACK has a better performance for smaller packet size (<500 bytes) 
and less nodes while MACA overcomes for larger packet size and denser networks.  
 
Based on these study on existing protocols, Aloha is more suitable for our case. In our 
case, the underwater network is relatively small and sparse. The application packet size is 
not large. As is usually the case in many commercial acoustic modems/transceivers, the 
physical layer in our device is a half duplex system, which means listening while 
transmitting is not possible. It does not transmit while reception is in progress and does 
not receive while transmitting. From the above analysis, Aloha with ACK is a good 



choice. However, I implemented RTS/CTS-based MACA as well to make a comparison 
with Aloha. 
 
Protocol Implementation 

The basic idea of an Aloha system is simple: senders transmit whenever they have data to 
be sent. Sender waits for a maximum Round Trip Time (RTT) for an ACK. If there is no 
ACK back, the sender just waits a random amount of time and resends it. The waiting 
time must be random or the same frames will collide over and over. At the receiver end, 
it sends an ACK to the sender if the received packet is error free. Figure 2 is a state 
diagram. The system will model three layers of the OSI stack - Network, data link, and 
Physical. Network layer generates the packet to data link layer or gets the packet from 
data link layer. Data link layer follows the state diagram to process the packets. Physical 
layer is responsible to encode and send signals, or receive and decode signals.  
 

 
Figure 2. Aloha State Diagram 

 
For MACA protocol the transmitter sends RTS first to the destination, and upon receiving 
a CTS back, it then sends its data packet to the receiver. And, it requests an ACK after 
the correct data, which can reduce the waiting time of retransmission. The basic idea is 
listed below. 
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ALOHA protocol pseudo code: 
 
if databuffer is not empty 
 compose and send a packet; 
listening in the channel for a  period (period = wait) 
 if received a packet in a period(time<wait) 
  if the packet’s destination matches with the its device ID, 
   if it is an ACK 
    Succeed. Check the databuffer 
    if not empty, compose and send next packet 
    set ‘wait’ to round trip time 
   else if it is a DATA 
    if CRC is right 
     put data to RX databuffer 

compose and send an ACK packet to this node 
else CRC is wrong 

     drop the packet, set ‘wait’ to round trip time 
   else if there is an error 
    drop the packet, set ‘wait’ to round trip time 
  else if the packet’s destination doesn’t match with its device ID 
   if it is an ACK 
    do nothing 
   else if it is a DATA 
    keep silent for the ACK to be sent back  
 else if period ends (time==wait) 
  send the same DATA packet to the same node  

set ‘wait’  to a random time+RTT 
 



MACA (RTS/CTS) protocol pseudo code: 
 
if databuffer is not empty 
 compose and send a packet; 
listening in a period (period = wait) 
 if received a packet in a period(time<wait) 
  if the packet’s destination matches with the its device ID, 
   if it is an ACK 
    Succeed. Check the databuffer 
    if not empty, compose and send next packet 
    set ‘wait’ to round trip time 
    set status=STATUS_WAIT_CTS; 
   else if it is a DATA 
    if CRC is right 

put the data to RX databuffer 
compose and send an ACK packet to this node 

else CRC is wrong 
     drop the packet, set ‘wait’ to RTT 
   else if it is a RTS 
    compose and send a CTS to this node 
   else if it is a CTS 
    compose and send a DATA packet to this node 
    set status=STATUS_WAIT_ACK; 
   else 
    set ‘wait’ to round trip time 
  else if the packet’s destination doesn’t match with its device ID 
   if it is an ACK 
    do nothing 
   else if it is a DATA 
    keep silent for the ACK to be sent back 

set ‘wait’ to one way time 
   else if it is a RTS 

Keep silent for the coming CTS, but free to transmit while the 
data frame is being sent, set ‘wait’ to one way time 

   else if it is a CTS 
Keep silent for the coming DATA. Defers sending anything until 
that DATA is  finished by some other node.  
set ‘wait’ to (one way time + data transmission time) 

  
 else if period ends (at time==wait) 
  if status == STATUS_WAIT_CTS 
   send the same RTS  packet to the same node  

set ‘wait’  to a random time+RTT 
  else if status == STATUS_WAIT_ACK 
     send the same DATA packet to the same node 

set ‘wait’  to a random time+RTT 
 



Packet Format 
 ALOHA: 
 Data Packet 

ID 
(4 bits) 

Dest 
(4 bits) 

Source 
(4 bits) 

Length 
(4 bits) 

Data 
(8*n bits) 

 CRC 
(8 bits) 

ACK 
ID 
(4 bits) 

Dest 
(4 bits) 

Source 
(4 bits) 

 
MACA(RTS/CTS): 
Data Packet 

ID 
(4 bits) 

Dest 
(4 bits) 

Source 
(4 bits) 

Data 
(8*n bits) 

 CRC 
(8 bits) 

RTS/CTS 
ID 
(4 bits) 

Dest 
(4 bits) 

Source 
(4 bits) 

Length 
(4 bits) 

ACK 
ID 
(4 bits) 

Dest 
(4 bits) 

Source 
(4 bits) 

 
For the aloha, the data packet has a ID field, which tells the packet type (Data or ACK), a 
Dest field, which tells the packet destination, a source field, which tells where the packet 
is from, a length field, which tells the data length, and a CRC field, which is used to 
check if the data packet is correct. The ACK packet is pretty simple, which only contains 
ID, Dest and Source. 
 
For MACA protocol, the data and ACK packets are similar as Aloha. The difference is 
the RTS and CTS packet have a length filed, which is used to notify the destination the 
data size and notify the other nodes how long they should keep silent. 
 
The CRC in the packet is a Polynomial Code to make sure there is no data error in the 
packet, otherwise, the sender will send that packet again. Here I use generator 
G(x)=x8+x2+x+1 ->(100000111) 
 
I didn’t use error correction mechanism in the data link layer, only focusing on the 
estimation of protocol performance at this initial implementation.  However, the 
convolutional algorithm could be used in the data link layer as the future work. 
 
System Implementation 

The operating system or even some schedulers are too complex and expensive for this 
device. The code size has to be compact due to the limitation of this microcontroller. I 
use a Round-Robin scheduling for the protocol implementation, with interrupt enabled. 
The application tasks could be serviced in the loop or be configured as an ISR. They can 
put the data into TX data buffer. The transmitting task will check if there is any data to 
send in the data buffer. 



The listening task will keep checking the channel if there is a coming packet. If there is a 
coming packet, the listen task will end earlier, otherwise it will return at the end of the 
specified period. 
 
The transceiver device is a half- duplex system as is usually the case in many acoustic 
nodes, which means listening while transmitting is not possible. So when it is 
transmitting, it shouldn’t be interrupted by any events so the interrupt is disabled during 
that time and incoming packets will be lost due to this half-duplex mode.  
 

Example: 
 
While(true){ 

if(Databuffer!=Empty) 
  Transmit(); 
 if(TaskReadytoRun) 
  Task(); 
 if(RequestforISR) 
  ISRtask(); 
 ListenChannel(); 
… 
} 
 
Interrupt ISR(); 
… 

Transmit and listen are protocol layer functions which will call TX & RX separately. The 
TX and RX are the interfaces and they will call physical layer functions to send or 
receive the signals. The Goertzel algorithm is employed in the implementation, to 
indentify the frequency component from a signal since the transceiver doesn’t have any 
tone decoder. It is implemented in receiver function of physical layer. 
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Figure 3. Function Call Graph 



Menu System 

There is a menu system in the implementation, from which I can easily choose Aloha or 
MACA to test the performance. It also includes some other functions, such as save data, 
display results or change configuration. This system is extendable. 
 

EEPROM 

In order to save space and reduce the workload on debugging, I put lots of information to 
EEPROM, such as node ID, Goertzel coefficient table. At the beginning of the program, 
these values will be read into memory. With the node ID hard coded in the EEPROM, all 
the nodes could share the same .hex file, otherwise every time the code is modified, I 
have to create different versions for different nodes. Besides, when the program is done 
after the tests, I save all the results into a particular address of EEPROM. We can retrieve 
the results even from a careless power-off or do post-processing later. 
 
Experiments 

To estimate the protocol performance in this small network, I focus on the throughput, 
which is defined as successful received packets divided by total transmitted packets in 
our case. I built a simple grid network and each node unicasted the packets to all the other 
three nodes sequentially. In the end, I collected the successfully received packets from all 
four nodes within a period.  
 
The tests were conducted both indoors and outdoors. For indoor test, I put the transducers 
next to each other in the same mug. The outdoor test was done in the Lake Raleigh. The 
transducers were separated about 50~100 feet from each other. In order to estimate the 
throughput of the protocols, in my test I use the worst case scenario, in which all nodes 
have their data ready to send from the very begging, and the data is unlimited during the 
test time. The data speed is 250bps (40ms to send a bit). 
 

Results 

Below are the test results. 
Lab test: 
Aloha   Throughput=27.2% 

RX packet TX packet TXACK RXACK 
34 125 17 14 

 
MACA  Throughput=20% 

RX Data TX Data RX ACK TX ACK TX RTS TX CTS RX RTS RX CTS 
17 95 13 17 51 36 36 27 

Lake test: 
Aloha   Throughput=8.1% 

RX packet TX packet TXACK RXACK 
10 123 10 6 

 



MACA  Throughput=8.2% 
RX Data TX Data RX ACK TX ACK TX RTS TX CTS RX RTS RX CTS 
5 61 3 5 33 9 9 6 
 
From the above results, we can see the overall throughputs for both protocols are not very 
good because in this worse case scenario, there are lots of collisions when all the nodes 
have infinite data to send. Both protocols have a better performance for indoors tests than 
outdoors, the reason is that the situation for the outdoors test is much worse than indoors 
due to lots of noise and interference introduced by wind, wave and motors. 
 
Clearly, Aloha has a better performance than MACA in lab test but the performance 
decreases more than MACA when moving to a worse environment, which tells us the 
interference effects Aloha more than MACA.  
 
Another fact here in these tests is that, during the fixed testing time Aloha could transmit 
as more as twice data than MACA. So from this point Aloha is a better choice for a small 
and sparse network. 
 
Some thoughts to improve the protocol 

Aloha could be improved to bring more throughput in some cases. For example, if one 
node gets a packet correctly, we could let it keep waiting for another RTT period instead 
of sending out its ready data, given the assumption that each time there are more than one 
packet need to be sent to another node. In this way, there will be less collisions. This will 
cause temporary starvation and delay the task for one node, but both of the two nodes 
could finish their transmission tasks in a shorter time. 
 
Current implemented MACA is a little aggressive, because if a receiver gets a data packet 
but with errors (CRC fails), it will drop the data packet and send its packets if waiting 
time ends. But we can change the protocol to make the receiver wait for another RTT 
period in the case that CRC checking fails, because we assume the sender will send the 
data packet again without an ACK from the receiver. In the way, there will be less 
collision happening for the next transmission. I did a simple test in the lab by changing 
the protocol a little bit, and the result came out as follows: 

Improved MACA:  
RX Data TX Data RX ACK TX ACK TX RTS TX CTS RX RTS RX CTS 
20 65 15 19 43 32 32 26 

MACA  Throughput=29.0% 
By comparing these numbers with the previous MACA, we can see that there is a big 
improvement on the throughput, even better than Aloha, although the transmitted data 
amount during the testing period is still less than Aloha.  
 
Another similar idea on MACA is to use NAK as another type of acknowledgement to 
tell the sender to send the data again. This could help the sender reduce the waiting time 
in some cases.  So basically, by adding new designs, I think MACA could be improved as 
well to be used in the small and sparse network.  
 



Another observation is, lots of packets are dropped due to CRC error, so if we can correct 
those errors, then not only we can reduce the collisions, but also we can save more energy. 
So, in the future work, it is better to implement error correction algorithm for 
communication, e.g. convolutional encoding (viterbi coding). For the unreliable 
underwater communication, this could be a great help. 
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