
Project Part 2 – Mid-Term Project Report
Christopher Zimmer

3/31/2009

Some of the goals that needed to be accomplished to fulfill this work are presented below.

Week 1
In this work I have reviewed literature that applies to security in the general purpose
environment. Since this work primarily deals in code injection I reviewed such concepts as
stack shielding, address stack layout randomization, and compiler based canary values. This
approach is most similar to compiler based canary values as it will utilize intra task
instrumentation to best facilitate the needs.

Week 2
The Simulator environment I am working in has been modified with a new system call that
allows the scheduler to set up a periodic timer interrupt. This is a programmable interrupt
made from the scheduler. My current scheduler is currently being interrupted every 2 us in
simulation time. The frequency of the scheduler is clocked at 1 Ghz so that’s roughly
equivalent to every 2000 cycles. I feel that interrupts every 2000 cycles will be a good
starting point in evaluation to determine cost and trade-off regarding overhead of this project
vs detecting timing anomalies.

Week 3 - Current
I have modified the scheduler and the simulator to support new system calls that enable the
scheduler to determine the last running PC of the last task in a single processor environment.
A test real-time task set has been configured using two simple clab benchmarks CNT and
LMS. The tasks have been analyzed in both a regular timing analyzer tool set and a
parametric timing analyzer tool set.

Remaining Challenges
1. The aim of this work was to attempt to create a security check that was completely
orthogonal to the running task. But to do this in a practical manner on a uni-processor system
it is going to be necessary to relax that constraint until this work can be moved into a multi-
core system. For now I am working implementing a system of in-loop counters that the
scheduler can reference quietly during the periodic security interrupts to determine the
amount of times back-edges have been utilized for a set of instruction addresses. Utilizing
these numbers it will be possible to utilize the cost of preceding code segments, and
parametric loop equations to determine if the current program is operating within normal
boundaries. My expectation is that the instrumentation will be finished tomorrow.
Expected Finish end of this week.

From there the final challenge left for the next week is to design a partitioning scheme for the
output data from the timing analyzer tool set for which to compare the scheduler security
values against.

 2. Two ideas to solve for this is to use the verbose timing metrics received from the timing
analyzer to create an actual timing end value for the each of the instructions. Though this
method will only work for the sequential code and may require significant memory overhead.

This will then be coupled with parametric timing values for PC’s that come from loop bodies.
The structure of the loops are known and the secure scheduler will have to utilize this to
determine nesting and probable timing values for a given PC.
The other approach I’m going to attempt to utilize is a partitioned approach in which the last
PC is stored between periods and I’m going to insure using timing data and the known period
and frequency of the processor to determine if the current PC value is in a valid range for the
amount of cycles executed between the periods. For example, the period is every two
microseconds or 2000 cycles between periods at this frequency. If there are no preemptions
between these two times, if the PC I land on in the timing tree has 20 instructions left in its
partition and 10 cycles left for the WCET of that partition (assuming partitions are centered
around basic blocks) we have just detected an attack. The inverse works as well using the
known period. If the current PC’s BCET is 4000 cycles away from the last PC and there were
no preemptions, we may have detected a timing anomaly.
Expected Finish end of next week 4/10

The remainder from this point will be one half composing task sets using the benchmarks
and testing this approach by itself and then in conjunction with two other approaches
created prior to this project in this realm of work. The other half will be performing the
write up of the results and approach into a report.
Expected Finish 4/21

