
Ad-hoc Social Networking for the Google Android Platform

Final Report

CSC 714 Real Time Systems

David Gurecki

dwgureck@ncsu.edu

http://www4.ncsu.edu/~dwgureck/csc714/

Summary

Configuration of the Android G1 phone in ad-hoc mode was achieved, and communications between 2 G1 phones

was successfully tested. The resulting software application, adhocClient, was built by incorporating a script for

kernel module configuration, some binaries, and modified code from the Android Wi-Fi Tethering open source

project. A prototype social networking GUI was built on top of this base. The adhocClient can operate in either Ad-

hoc mode or using a WiFi Access Point as configured via Settings. Ad-hoc mode includes a discovery mode, during

which the application alternates between a DHCP Client and DHCP Server to allow for automatic negotiation of IP

addresses with other Ad-hoc endpoints. Other clients are discovered using a UDP heartbeat message sent to the

network broadcast address. The heartbeat is always being broadcasted, and as long as a heartbeat message is

received from other clients the DHCP role is frozen. When heartbeats are no longer being received from any client,

the application begins alternating DHCP modes again. When one or more clients are discovered, the various clients

can exchange status updates, messages, and GPS coordinates from each other.

Since there was only limited access to a second G1 phone, a testing application was also developed which runs on

any laptop with a WiFi radio.

Solution

The work to develop this application centered around several key tasks: adapting components from the open source

Wi-Fi Tethering project to configure the radio in Ad-hoc mode, specifically to enhance the “tether” Linux script to

act as a DHCP Server or Client; developing a UDP messaging protocol to discover other clients and transmit and

receive text messages and GPS location; learning Android GUI fundamentals to develop various GUI screens

containing lists, buttons, and text input fields; testing an Ad-hoc connection and UDP messages with two G1

phones; and writing a testing Java app that runs on a laptop. There was insufficient time to develop some of the

fancier GUI capabilities such as transmitting multimedia content, or displaying GPS location using maps or a

compass. However, this can be seen as a proof of concept that could be built upon in the future.

The solution will be described by its components in the following sections:

Graphical User Interface

The GUI for AdhocClient contains the following screens:

Screen Description

Setup Uses Android’s built-in preferences screen for various settings, including: username, WiFi

mode (Ad-hoc or Access Point), WiFi SSID, channel, and power mode.

Incoming Events Displays a history of incoming messages and status updates from other clients, sorted in

reverse timestamp order. Clicking on a message entry displays the message in the

Message View screen.

Friend List Displays the list of Friends ever discovered since the app was started. The list shows

current status, including real-time GPS coordinates, and an indication of whether the

Friend has stopped heart-beating (i.e. stale data). Clicking on a Friend brings up the

Message View screen with an editable field for typing and sending a message to the

Friend.

My Status Allows the user to change their status, as well as start/stop the network control service

(which also stops Ad-hoc mode and discovery of other devices).

Message View Either displays messages received from Incoming Events list, or provides an interface for

typing a new message to be sent to a Friend. When browsing received messages, a Prev

and Next button allow the user to read other messages in the list.

When the application first loads, the Incoming Events screen is initially displayed. The MENU button is used to

select from the first four screens. The Message View screen is only accessible by selecting a Friend from the Friend

List (for sending messages), or selecting an Incoming Message from the Events list. The Back button is then used to

return to one of the four screens.

Activities

Each interactive GUI screen in the Android framework is implemented as an Activity. This application has the

following activities:

Activity Superclass GUI Screen

SetupActivity PreferenceActivity Setup

IncomingEventActivity ListActivity Incoming Events

MessageActivity Activity Message View

FriendListActivity ListActivity Friend List

MyStatusActivity Activity My Status

Other classes

In addition to GUI activities, there are other classes which implement functionality for this application.

The AdhocClient class implements the android Application superclass. This class is used by all the Activities for

data storage of lists (messages, friends, etc.) and controlling the current state of the application. The storage behind

the event list and friend list are ArrayList’s of String objects. There is also an embedded class called FriendData for

storing the name, IP address, last message time, and current status message from each Friend. FriendData also

contains methods for building and parsing messages for the UDP messaging protocol. This consists of two types:

Heartbeat, which is used to announce a client’s presence, send current status message and GPS position, and

Message, which is used to transmit a single text message. These messages consist of simple ASCII strings.

AdhocClient implements the UDP sending and receiving threads. The UDP Receiving thread is implemented by the

ClientReceiver embedded class. This thread binds a UDP DatagramSocket to port 8888, and accepts incoming UDP

messages from other clients. The UDP sending thread is implemented by the ClientSender embedded class. This

thread’s main purpose is to send Heartbeat messages to the broadcast address on the phone’s current network. The

current network can change depending on which state the application is in: either DHCP Server, DHCP Client, or

AccessPoint. The current IP address (and thus broadcast address) is obtained in a slightly different manner

depending on the current state. At this time, it is assumed that the broadcast address is always obtained by replacing

the last of the IP address octet with 255. This assumption is always true when Ad-hoc mode is active and, while not

always true on an Access Point network, it was sufficient for testing basic functionality.

The NetworkControl thread performs the important task of alternating between configuring the WiFi radio in DHCP

Server and DHCP Client modes by invoking the netcontrol script. The DHCP Client mode runs for a maximum of

60 seconds if an IP address is obtained. If no IP address is obtained, it runs until the “dhcpcd” program returns after

a timeout period, which appears to be 30 seconds. The DHCP Server mode runs for 60 seconds. If any heartbeat

messages are received in these modes, the thread stops alternating and leaves the phone in the current mode until

heartbeats cease to be received. This thread also responds to the Start Service / Stop Service buttons being pressed,

driving transitions between the various states and starting up or shutting down services along the way.

The CoreTask contains code borrowed (with only slight modification) from the WiFi Tethering project. This is not

an actual task or thread as the name implies, but a set of utilities for checking root permission, installing binaries

into the appropriate directory, setting file permissions, running root commands, writing config files for dnsmasq (the

DHCP Server) and tiwlan.ini, executing commands (primarily the netcontrol script) in the underlying Linux system,

and reading the output of these commands. These primitive operations could be reused in a similar manner as used

by the Tethering application. Code which is not being used by this application has been commented out.

Several modifications were made to the Tethering project’s tether shell script, which has been renamed to netcontrol

for this application. The original script installed the WiFi kernel module, configured the tiwlan0 interface with a

static IP address, started the dnsmasq program as a DHCP Server, configured IP forwarding, and executed iptables

rules to enable NAT functionality with the 3G network. It could also stop all these services and return control of the

WiFi radio to the Android OS. The netcontrol script reuses the script functionality for installing the kernel module

and starting dnsmasq, however no iptables or IP forwarding is necessary for this application. There are 4 commands

that can be executed with the netcontrol script:

• start_server – install kernel module, configure static IP address, and start dnsmasq DHCP server

• stop_server – stop dnsmasq, unconfigure and stop tiwlan0

• start_client – install kernel module, start tiwlan0 with no IP address, run dhcpcd client

• stop_client – unconfigure and stop tiwlan0

These commands are executed by the AdhocApplication’s NetworkControl thread when Ad-hoc mode is in use.

Initially, DHCP Client mode is started to see if any other DHCP Servers are available within the given Ad-hoc SSID

network. The dhcpcd client times out after 30 seconds if no DHCP Offers are received. If this operation fails, or if

it succeeds but no heartbeat messages are received, the NetworkControl thread runs stop_client and start_server

commands to start the dnsmasq DHCP Server. This runs for another 60 seconds. The alternating between these

modes only stops if heartbeat messages are received from another client.

AdhocClientTester

This program is included in a separate package and is intended to run on some laptop with a wireless adapter. The

program is intended to mimic another “Friend” present in the same network as the G1 phone. When the program

starts, it reads the friend’s username as an argument to the program. It starts a UDP Server thread which binds to

port 8888 and listens for messages. When the first heartbeat message is received, it analyzes the source IP address

and converts it to a broadcast address by replacing the last octet with 255. It then sends continuous UDP heartbeat

messages at 1-second intervals announcing its presence on the network. The status message and GPS coordinates

are echoed back from the heartbeat message received from G1 phone. Thus, if the G1 phone changes its status

message, this “friend” will appear to change its status message to the same thing. In addition, this tester application

also sends a test message saying “Hello” every 30 seconds directly to the IP address of the G1 phone. The tester

program outputs all messages received to stdout so the proper formatting can be verified.

Test Case Descriptions

Test 1: Laptop DHCP Server, G1 DHCP Client

Setup: Configure a laptop to run as an Ad-hoc network with the same SSID as the phone. Specify a static IP

address, e.g. 192.168.3.1 with netmask 255.255.255.0. Disable Windows Firewall (very important!). Obtain a

DHCP Server program, e.g. http://download.cnet.com/Tiny-DHCP-Server/3000-2085_4-10796649.html . Configure

the DHCP Server to respond to the MAC address of the phone (can be seen after a Discover message is received).

Execution: Start Adhoc Client on the Phone, and AdhocClientTester on the laptop. The Phone should start in

DHCP Client mode. Verify DHCP Connection is made from Laptop. The AdhocClientTester should display

Received packet from: 192.168.3.2, port: 44760, msg: Heartbeat:~david~Available~249.0, 249.0

On the G1 Phone, the Friend List should display the “Laptop” friend with the same status as the phone application

has. The GPS coordinates should either be actual coordinates, or if GPS satellites are not in range, sample numbers

steadily counting up by 1 per second. The Event List should show an entry that the Laptop friend has updated its

status.

Every 30 seconds, the AdhocClientTester will send a message to the G1 phone. This message should appear in the

Event List. Selecting the event should bring up a Message View GUI displaying the message text: Hello. The Prev

and Next buttons will traverse through all messages received.

Test 2: Change status message

Setup: continue from last test case

Execution: Change the status message on the G1 phone. The AdhocClientTester will begin echoing back the new

status message. Verify that the status is updated on the Friend screen and on the Incoming Events screen.

Test 3: Send a text message

Setup: continue from last test case

Execution: On the Friends List, click on the “Laptop” friend. This will bring up a Send Message GUI screen. Type

a message and click “Send”. Verify that the message is received by the AdhocClientTester, such as the following.

Received packet from: 192.168.3.2, port: 42847, msg: Message:~Laptop~test message~

Test 4: Stale Friends

Setup: continue from last test case

Execution: Stop the AdhocClientTester on the Laptop. After 15 seconds of no heartbeats, verify that the Friend

status changes to “Unknown [stale]” on the Friend List. Verify that the count of Active friends decrements by 1 on

the My Status page. If the count of Active friends is now 0, verify that the program begins alternating between

DHCP Client and DHCP Server on 60-second intervals. After a while, start the AdhocClientTester program again.

Verify that the Active Friend count goes up by 1, and the status for the Laptop friend is now updated in real-time on

the Friend List.

Test 5: Multiple Friends

Setup: continue from last test case. Start a second instance of AdhocClientTester on the laptop, with a different

username than the first instance. Note that the second instance will be unable to bind a UDP Server because the first

instance is already bound to the same UDP port.

Execution: Verify that 2 friends are shown on the Friend List, and the My Status screen shows 2 active friends.

Change the status message on the My Status screen. Verify both friends echo back the status change. Verify

messages are received from both friends. After a while, shut down the second instance of AdhocClientTester. After

15 seconds of shutting down a tester, verify that the Active Friend count decrements by 1.

Test 6: Test Stop Service / Start Service button

Setup: continue from last test case

Execution: On the My Status screen, click the Stop Service button. Verify that the status changes to “Stopped”

within 30 seconds or less.

Test 7: Laptop DHCP Client, G1 DHCP Server

Setup: Stop the AdhocClientTester program on the Laptop. Click “Stop Service” on the My Status page of the

phone. Configure the laptop to run as an Ad-hoc network with the same SSID as the phone. Specify the wireless

interface to act as a DHCP Client. Click “Start Service” on the Phone. Verify the phone initially tries to act as a

DHCP Client, but gives up after 30 seconds approx. Verify the phone switches to DHCP Server mode. Verify the

laptop receives a DHCP address. Now, start the AdhocTesterClient. (This must be done after the IP address is

obtained so that the UDP Server binds to the correct IP address). Verify that the Laptop Friend appears on the G1

phone.

Repeat Tests 2-6 in this mode.

Test 8: Laptop and G1 phone in Access Point mode.

Setup: Stop the AdhocClientTester program and click “Stop Service” on the phone. Bring up the Setup screen and

change the WiFi mode to “Access Point”. Configure the Laptop to use the same Access point. Ensure that the

Access point is using a network with 255.255.255.0 network mask. Go back to the My Status screen, and click

“Start Service”. Verify that the status changes to Access Point. Start the AdhocClientTester on the laptop. Verify

that the Laptop Friend appears on the G1 phone.

Repeat Tests 2-6 in this mode.

Test 9: Two G1 phones in Ad-hoc mode

Setup: Install AdhocClient application on 2 G1 phones. Start the first phone, and allow the service to run for

enough time to transition from DHCP Client mode into DHCP Server mode. Start the second phone. Verify that

both phones show “1 Active Friend” within about 30 seconds. Continue testing by sending messages, changing

status, and verifying the Incoming Events and Friend List pages. Press “Stop Service” on the phone running a

DHCP Server. After 15 seconds, the other phone will switch to DHCP Server mode. Press “Start Service” on the

first phone, and allow it to become a DHCP Client. Verify the connection is re-established.

Open Issues, Limitations, Future Improvements

1. The assumption was made that the 3G data network is off during operation. It is uncertain how the program will

act if the 3G data network is active. Since we do not enable IP forwarding, and are generally using private address

ranges like 192.168.x.y, it may work fine.

2. The assumption was made that the network mask for Access Point mode is always 255.255.255.0. This is not

always true, and ideally could be made into a setting or obtained some other way.

3. When switching back and forth between DHCP Client and DHCP Server, the script currently shuts down the

entire tiwlan0 interface, reloads the kernel module, and restarts the tiwlan0 interface again. This adds some time

delay that could be optimized out by keeping the interface up over the transition.

4. One major limitation is that there is no clear way to know when two WiFi radios have made a connection in Ad-

hoc mode. The native WiFi manager available through the Android platform is disabled, so it cannot report when

the radio is connected or what SSID networks are available. This leads to the requirement that all phones must use

the same SSID, and limits the responsiveness of the application.

5. It sometimes takes time for 2 Adhoc WiFi radios to establish a connection. If the phone is acting as a DHCP

Client, there is no way to know with certainty whether a WiFi connection exists before starting the “dhcpcd” client

program to send Discover requests. Thus, the dhcpcd program may send Discover requests while the radio is

disconnected, and may not resend them after the radio becomes connected. If the dhcpcd program times out, we

switch back to DHCP Server mode. A hard delay of 5 seconds is used to increase the odds of success. Ideally, it

would be better to research ways to determine if the WiFi connection exists before starting this client.

6.The application occasionally experiences some Java exceptions if a WiFi operation fails for some reason. While it

is reasonably robust, it is not very obvious when something serious has happened (such as a thread exiting) and there

is no current way to stop & restart the application, aside from using the “adb” tool or restarting the phone.

7. A Friend is uniquely identified in the Friend List by Name + IP Address. If a connection drops and resumes later,

or DHCP roles are reversed between 2 phones, it is possible that the same friend now uses a different IP address.

Yet, it will appear as a new friend in the Friend List. This could be fixed by some logic changes.

8. It is not clear how useful the DHCP handshake mechanism would be if one tried to scale up to many phones. It

should be possible to communicate using an Ad-hoc network with many phones. However, one phone must act as a

DHCP Server for the group. If two phones initially establish their roles, and other phones later enter as DHCP

Clients, they can communicate. But if there were two pairs of phones, each paired to each other with Server/Client

roles, they would not be able to communicate. Since the phone alternates between modes, it is likely that more than

one DHCP Server would be assigned in a group of many phones. This shows the limitation of such an algorithm,

and the only improvement would be using static IP addresses.

9. Randomized timeouts for the different DHCP states was not implemented. As a result, it is possible for 2 phones

to become “synchronized” and never connect without manual intervention. This could be improved by randomizing

the time spent as a Server, however it still may take some time for the phones to establish a connection.

10. The usefulness of this application is limited to a “proof of concept”. It could be expanded to include other

multimedia content such as sending pictures, or showing a compass to find other friends given their GPS locatoin.

All this could be built on the current base, the project as is just shows that it is possible to send the required

information over an Ad-hoc connection.

Conclusion

Ad-hoc networking, while not available through the native Android platform, is possible using open source tools

which manipulate the underlying Linux operating system. The feasibility of an Android application which can

manage Ad-hoc mode and send simple messages between G1 phones has been demonstrated.

