
Scalable Real-Time System Design using Preemption Thresholds 

Manas Saksena* 
manas@timesys.com 

Abstract 

The maturity of schedulabilty analysis techniques for 
fired-priority preemptive scheduling has enabled the con- 
sideration of timing issues at design time using a spec- 
ification of the tasking architecture and estimates of ex- 
ecution times for tasks. While successful, this approach 
has limitations since the preemptive multi-tasking model 
does not scale well for a large number of tasks, and the 
fired priority scheduling theory does not work well with 
many object-oriented design methods. In this paper we 
present an approach that scales well even when the de- 
sign consists of a large number of concurrent jobs. The 
approach avoids any unnecessary preemptability in the 
system, thereby resulting in reduced run-time overheads 
from preemptions and associated context-switches. It also 
allows significant memory savings by grouping jobs into 
non-preemptive groups and then sharing the stack space 
between them. Our approach is based on our earlier 
work on scheduling using preemption thresholds that al- 
lows parametric control over preemptability in a priority 
based system. We show that our approach provides sig- 
nificant advantages over one using fixed-priority preemp- 
tive scheduling architecture. The benefits include higher 
schedulability for small number of tasks, and lower run- 
time overheads, and hence better scalability. We de- 
velop algorithms that allow design time consideration of 
schedulability, and automatic synthesis of an implemen- 
tation model to minimize run-time overheads. 

1. Introduction 

Early consideration of timing issues is considered an 
essential aspect of real-time system design, but has not 
been possible until recently due to the lack of a sound 
mathematical basis that could support it. The maturity of 
schedulability analysis techniques, and in particular those 

”TimeSys Corporation, 4516 Henry Street, Pittsburgh. PA 15213, 

t Dept. of Computer Science, Concordia University, Montreal, PQ 
USA 

H3G 1M8, Canada 

Yun Wangt 
y-wang@cs.concordia.ca 

based on fixed priority scheduling theory [7, 11, 12, 191 
has facilitated the introduction of timing analysis in the 
early stages of real-time system design [2, 6, 201. One 
prominent and representative example is the HRT-HOOD 
design method for hard real-time systems [2]. HRT- 
HOOD provides design abstractions that are motivated 
by the tasking models of fixed-priority scheduling theory, 
thereby providing direct support for schedulability anal- 
ysis of HRT-HOOD designs. Such abstractions include 
the cyclic and sporadic objects, representing periodic and 
sporadic tasks respectively. 

The approach followed in HRT-HOOD works well 
when the system can be decomposed into a relatively 
small number of periodic and sporadic tasks, and when 
each task is of a relatively coarse granularity. Both 
these limitations relate to the nature of the underlying 
scheduling model, i.e., preemptive multi-tasking. Pre- 
emptive multi-tasking incurs relatively high costs in con- 
text switching, and these costs become significant when 
the task granularity is small (since the context switching 
overhead is amortized over a smaller execution time) and 
when there is a large number of tasks (more tasks would 
typically result in increased context switching). In addi- 
tion, there is a per-task memory cost, largely due to the 
need to maintain a separate stack for each task. While 
these run-time costs may be irrelevant in most non em- 
bedded environments, they play a significant role in many 
embedded real-time systems since such systems tend to 
be resource constrained. 

Another limitation of this approach is that it doesn’t 
work well with some of the object-oriented design meth- 
ods; for example ROOM [17] and OCTOPUS [l]. Such 
design methods view the system as a collection of con- 
current (or active) objects that cooperate in implementing 
system functionality. Thus, each concurrent object par- 
ticipates in multiple system functions, and is subject to 
multiple timing constraints. Moreover, to maintain in- 
ternal consistency of the object, the requests on an ob- 
ject are processed in a “run-to-completion” manner, i.e., 
there is no internal concurrency within an object. In or- 
der to reduce multi-tasking costs, it is common to put an 
entire object (or even multiple such objects) into a sin- 

25 
0-7695-0900-2/00 $10.00 0 2000 IEEE 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 

mailto:manas@timesys.com


gle task. Such a task would receive processing requests 
for the object(s) in a queue and process them one by 
one [ l ,  4, 17, 181 by invoking the appropriate method 
to handle the request. Unfortunately, this implementation 
model is, in general, not analyzable by the fixed priority 
scheduling theory since each task in such an implemen- 
tation is subject to possibly multiple timing constraints 
- making it difficult to find a suitable scheduling prior- 
ity for the task and avoiding unbounded priority inver- 
sions [13, 161. Methods such as HRT-HOOD circumvent 
this difficulty by restricting parts of the design model that 
have timing constraints [2]. 

1.1. Approach and Contributions 

In this paper, we present an approach that addresses 
these problems. A unique aspect of our design approach 
is that it exploits non-preemptability, as much as possible, 
to reduce run-time overheads. The theoretical basis for 
this work is grounded in our earlier work on dual-priority 
scheduling that integrates and subsumes both preemp- 
tive and non-preemptive scheduling models and provides 
parametric control over the degree of non-preemptability 
in the system [22]. 

In our design approach, we assume that a real-time sys- 
tem design is given as a set of concurrentjobs with defined 
inter-arrival times, execution time requirements and dead- 
lines. The scheduling model for the design requires that 
each job be assigned two priorities: a regular priority, and 
a preemption threshold (which is no less than its preemp- 
tion threshold). When a job is released, its effective prior- 
ity is its regular priority. Once the job is scheduled for the 
first time, its effective priority is raised to its preemption 
threshold. 

It is easy to see that both preemptive and non- 
preemptive scheduling are special cases of this schedul- 
ing model. If the preemption threshold of each job is the 
same as its priority, then the model reduces to regular pre- 
emptive scheduling. On the other hand, if the preemption 
threshold of each job is set to the maximum priority in 
the system then we get non-preemptive scheduling. By 
choosing an appropriate preemption threshold value, we 
are potentially able to restrict preemptability in the sys- 
tem to the desired level, and thus reduce the multi-tasking 
costs. Moreover, by doing so, we can also potentially 
make task sets schedulable that are not schedulable under 
both preemptive and non-preemptive schedulers. 

The preemption threshold for each job limits the num- 
ber of (higher priority) jobs that can preempt it. Clearly, 
a higher value of preemption threshold for jobs will limit 
the number of preemptions (and thus context switches) 
in the system, resulting in lower run-time costs. Ad- 
ditionally, jobs may be grouped together to form “non- 

preemptive groups,” i.e., a set of jobs in which no job can 
preempt another one in the set. Since the jobs in a non- 
preemptive group do not preempt each other, it is possible 
to achieve memory savings by running all jobs in a non- 
preemptive group from the same stack. 

Our design approach allows us to separate out “func- 
tional” considerations from “non-functional” (in this pa- 
per, timeliness and run-time costs) considerations. When 
identifying jobs in the design, the designer does not need 
to worry about scheduling parameters, and their effect 
on timeliness and run-time costs. We present algorithms 
that automaticdly synthesize scheduling parameters (pri- 
orities) for jobs to meet the timeliness requirements. For 
a system that is deemed to be schedulable, we present al- 
gorithms to optimize the values of the scheduling param- 
eters such that the run-time costs are minimized by merg- 
ing jobs into as few non-preemptive groups as necessary 
to meet the timing requirements. Finally, we also show 
how such a design may be implemented. 

Our design approach provides many benefits: 

(1) We provide a seamless and automatic way to trans- 
form a design model to an implementation model, 
based on the timing requirements of the system. 
In conjunction with automatic code-generation sup- 
port [9, 151, this allows for automatic translation 
of design models into executable implementations, 
avoiding error-prone and time-consuming transla- 
tion, and costly fine-tuning of implementations. 

(2) The approach is flexible, and applicable with a wider 
range of design methods and design level architec- 
tures, as compared to other approaches like HRT- 
HOOD [2] and MetaH [20] that are based on fixed 
priority preemptive multi-tasking architecture. 

(3) The approach simultaneously provides higher 
schedulability and lower overheads. Our simulation 
results over randomly generated sets of jobs show 
that for small number of jobs, we can get signifi- 
cantly higher schedulability. On the other hand, with 
a large number of jobs, our approach scales much 
better and results in much lower run-time overheads. 

1.2. Related Work 

Preemptability is considered a necessary pre-requisite 
to meet timing requirements in real-time system de- 
sign. Consequently, little attention has been given to 
non-preemptive scheduling models, except for very small 
static systems where some form of non-preemptive, cyclic 
executive scheduling can be suitably employed. While 
our design approach also requires a preemptive schedul- 
ing model, it exploits the fact that in most cases a preemp- 
tive priority system results in unnecessary preemptability. 

26 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 



Interestingly enough this observation was made several 
years ago by Jeffay [8], where he conjectured that “if pre- 
emption is required for feasibility, it will be limited to a 
few tasks.” Unfortunately, this observation has not been 
exploited until now, and our work provides a systematic 
method that makes use of this observation for designing 
real-time systems. Perhaps more interesting is the fact 
that, independent of our efforts, very similar ideas have 
been recently proposed in [3]. Their work, as ours, uses 
a dual-priority scheduling model to limit preemption, and 
grouping of jobs into non-preemptive groups. The dif- 
ference between our work and theirs is in the algorithmic 
details used to synthesize implementations. 

2. Problem Description 

In this section, we present a formal description of the 
problem addressed in this paper. In order to keep the fo- 
cus on the essentials of our approach, we use a simple ab- 
stract design model to build our solution. We note that our 
approach can be extended and used in conjunction with 
industrial strength design methods - interested readers 
may refer to [21] for details. 

We assume that a real-time system design is speci- 
fied using a set of independent periodic or sporadic jobs, 
T = {r1,7-2, . . . rr}, where each job ri is characterized 
by: (1) a period.(or minimum inter-arrival time) Ti, (2) an 
execution time budget (or worst-case execution time) Ci, 
and (3) a deadline Di. We assume that these attributes are 
known, and given as constants. 

For implementation and scheduling purposes, each job 
is also characterized by its scheduling attributes, which 
include a (nominal) priority 7ri E [l, . . . , N ]  and a pre- 
emption threshold yi E [ni, . . . , NI. These attributes are 
not known to begin with, and must be derived to meet the 
timing requirements. We assume that these scheduling at- 
tributes are determined offline, and are fixed at run-time. 
Finally, each job is assigned to a non-preemptive group 
&. Again, this assignment is not known to begin with, 
but is determined offline, and remains fixed during run- 
time. 

Definition 2.1 (Implementation Model) An implemen- 
tation model, denoted as Z, for  a given system 7 = 
{ r 1 , 7 2 , .  . . rr} is. defined by a 4-tuple: (M, Q, II, I?), 
where, M E [l, . . . , N ]  is the number of non-preemptive 
groups, and: 

II : T + [I, . . . , N ]  is a priority assignment for  
the jobs, 

r : 7 + [ri,. . . , N ]  is a preemption threshold 
assignment for  the jobs, and 

Q : 7 + [l, . . . , M] is a partitioning of jobs into 
non-preemptive groups. 

Throughout the paper, we use the abbreviated notation 
= II(T;), y; = l?(ri), and +i = Q(q) for convenience. 

Also, we assume that higher values indicate higher prior- 
ities, and that priorities and preemption thresholds are in 
the integer set [l, . . . ,NI,  where N is the number of jobs. 
Also, we assume that the preemption threshold of a job is 
no less than its priority, i.e., y; 2 7ri. 

The partitioning of jobs into non-preemptive groups 
must ensure that within any non-preemptive group, the 
set of jobs are pairwise mutually non-preemptive based 
on their scheduling attributes. The following proposi- 
tion gives the condition for two jobs to be mutually non- 
preemptive. 

Proposition 2.1 Two jobs, ri and rj, are mutually non- 
preemptive $(xi  < ~ j )  A (?rj < yi). 

Proof: Since 7ri < yj, ri cannot preempt rj. Likewise, 
0 

Based on the above, we can define a valid job parti- 
tioning that precludes two jobs from being assigned to the 
same non-preemptive group whenever their scheduling at- 
tributes allow one of them to preempt the other. 

Definition 2.2 (Valid Job Partitioning) A job  partition- 
ing Q is valid $ whenever two jobs are assigned to the 
same non-preemptive group, then the two jobs are mutu- 
ally non-preemptive. That is, in any valid job  partitioning 
the following holds true: 

rj cannot preempt Ti since r j  < yi. 

(vri) (vrj) ( $ ~ i  $j  * (xi < ~ j )  A (“j  I ~ i ) )  (1) 

Likewise, we will say that an implementation model is 
valid, if the job partitioning in the model is valid. In the 
rest of the paper we will restrict our attention to valid im- 
plementation models only. Given, a valid implementation 
model Z = (M, Q, II, I?), we can compute the worst-case 
response time for each job. Let, Ri (1) denote the worst- 
case response time for ri under the implementation model 
z. 
Definition 2.3 (Feasible Implementation Model) An 
implementation model Z for  a system 7 is called feasible, 
if it is valid, and if the worst-case response times for  all 
jobs under the implementation model are no more than 
their respective deadlines. The feasibility of an imple- 
mentation model is given by a predicate f easibZe(Z,7), 
which is defined below: 

feasible(& 7> %f (Vi E [I,. . . , N I )  Ri(Z) 5 Di (2) 

Then, the schedulability of a system 7 is given by a pred- 
icate sched(7) ,  which is defined below: 

27 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 



Definition 2.4 (Schedulability) A system is said to be 
schedulable if there exists a feasible implementation 
model for  it. We use the following predicate to define 
schedulability of a system 

any difference in overheads among different implemen- 
tation models for the assessment of feasibility. This as- 
sumption allows us to ignore the job-partitioning in ad- 
dressing the feasibility problem. 

We address the synthesis problem of determining a 
valid and feasible implementation model that, in addition, 
results in minimum number of non-preemptive groups 
over all feasible implementation models. By minimiz- 
ing the number of non-preemptive groups we minimize 
the stack space requirements. Additionally, we reduce the 
number of preemptions and thus save on context switch 
overheads. We address this problem by studying two 
inter-related problems: a feasibility problem and an op- 
timization problem. 

Feasibility Problem. Given a set of jobs, T = {ri = 
(Ci, Ti, Di) 1 1 5 i 5 N} , f inda  feasible implementation 
model Z = ( M ,  Q, II, r), ifone exists. 

Optimization Problem. Given a schedulable set of 
jobs, 7 = {ri = (Ci, Ti, Di) I 1 5 i 5 N } ,  find an op- 
timal feasible implementation model Z = ( M ,  9, II, I?), 
such that there exists no other feasible implementation 
model Z' = (M ' ,  Q', a', I?) with M' < M. 

While the two problems can be combined into a single 
optimization problem, we take the approach of consider- 
ing them separately. The motivation for this is that, in 
solving the feasibility problem, we ignore the job parti- 
tioning, making it easier to solve. Moreover, we are then 
able to use a solution for the feasibility problem to find a 
solution for the optimization problem, 

Additionally, we take a pragmatic approach and focus 
more on cost effectiveness of solutions than on their opti- 
mality. In other words, we want to find heuristic solutions 
that give quick, if sub-optimal (albeit close to optimal) 
answers. The rationale behind this is simple - the idea 
behind this approach is to use it early in the design pro- 
cess. In an iterative development process, these problems 
will be addressed repeatedly. In such a development sce- 
nario, it is more useful to get quick, and sufficiently close 
to optimal estimates, than to spend enormous amount of 
computation resources to get an exact optimal answer. 

In solving these problems, we will ignore the overheads 
of implementation. Again, this is a reflection of our de- 
sire to find efficient solutions. Clearly this approach may 
result in optimistic feasibility assessment. An alternative, 
pessimistic approach is to add some overhead to the com- 
putation time of each job. Essentially, we want to ignore 

3. Feasible Scheduling Attribute Assignment 

In this section we study the feasibility problem. Since 
we ignore the job partitioning for this problem, the prob- 
lem reduces to finding a feasible assignment for priori- 
ties and preemption thresholds for jobs.This problem was 
addressed in [22], where we introduced the preemption 
threshold scheduling model. In [22], we proposed a sim- 
ple branch-and-bound search algorithm to find a feasible 
solution. However, our simulation results show that the al- 
gorithm is not very efficient in finding solutions, which is 
not surprising since the search space is large. In this paper, 
we revisit the problem and develop a simple and effective 
strategy, which, while not optimal (i.e., it may fail to find 
a feasible solution, even if one exists), is quite effective 
in practice. In this paper, we present three different al- 
gorithms to solve the feasibility problem. The algorithms 
increase in computational complexity, and therefore our 
approach is to try them in sequence. The algorithms are 
described in the next three sub-sections. 

3.1. Algorithm A: Pre-Assigned Preemption 
Thresholds 

Our first algorithm concentrates solely on priority as- 
signment, and uses pre-assigned preemption threshold as- 
signment. The rationale for this algorithm comes from the 
following theorem. 

Theorem 3.1 The schedulability of a j o b  set under afired 
priority preemptive or  non-preemptive scheduling model 
implies the schedulability of the same job  set under a pre- 
emption threshold scheduling model. 

Proof: Trivial. 0 

The theorem implies that if we can determine feasibil- 
ity of a job set under either a preemptive priority assign- 
ment, or under a non-preemptive priority assignment, then 
we are done. Fortunately, the problem of feasible prior- 
ity assignment has been studied earlier, and an optimal 
priority ordering algorithm with a search space of O(n2) 
was presented in [ 191 for preemptive scheduling, which 
is also applicable to non-preemptive scheduling [5]. Note 
that we need to try both preemptive and non-preemptive 
priorities, as neither dominates the other [5]. 

28 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 



3.2. Algorithm B: A Two-Stage Greedy Algorithm 

Our second algorithm follows a two-stage process. In 
the first stage, we assign priorities using a greedy strategy. 
Then, in the second stage we use the priority assignment 
to find a preemption threshold assignment that will make 
the job set feasible. This algorithm takes advantage of an 
efficient optimal preemption threshold assignment algo- 
rithm that was presented in [22]. The algorithm takes a 
priority assignment as input and produces a feasible pre- 
emption threshold assignment, if there exists one for the 
given priority assignment. The preemption threshold as- 
signment has a search space of O(n2).  Thus, we only 
have to worry about the greedy priority assignment strat- 
egy, which we present next. 

3.2.1. Greedy Priority Assignment 

Our greedy priority assignment algorithm is based on 
the strategy for optimal priority assignment presented 
in [19]. Our algorithm uses a greedy heuristic to assign 
priorities to jobs, with the hope that the selected priority 
assignment will be feasible through an appropriate pre- 
emption threshold assignment. The greedy priority as- 
signment, presented in Figure 1, works by dividing the 
job set into two parts: a sorted part (SL), consisting of 
the lower priority jobs, and an unsorted part (UL), con- 
taining the remaining higher priority jobs. The priorities 
for the jobs in the sorted list are all assigned. The pri- 
orities for the jobs in the unsorted list are unassigned, but 
are all assumed to be higher than the jobs in the sorted list. 
Initially, the sorted part is empty and all jobs are in the un- 
sorted part. The algorithm repeatedly moves one job from 
the unsorted list to the sorted list, by assigning it the next 
higher priority. In this way, jobs are assigned priorities 
from lowest priority to highest priority. When considering 
the next candidate to move into the sorted list, each job in 
the unsorted list is examined in turn, and a heuristic value 
assigned to it. The job with the largest heuristic value is 
selected to move to the sorted list, and is assigned the next 
priority. When all jobs are in the sorted list, a complete 
priority ordering has been generated, and the threshold as- 
signment algorithm can be called to assign thresholds. 

We choose a simple heuristic function to select the next 
job for priority assignment. First, we tentatively assign 
the next higher priority to the job, and then compute its 
worst case response time based on this priority. The worst 
case response time computation is possible since we only 
need to know which jobs have higher priority, and not 
their actual priorities [22]. Also, at this stage, we have not 
assigned preemption thresholds - so we assume that the 
preemption threshold of a job is the same as its priority 
(i.e., the pure preemptive priority case). The computed 

Algorithm: GreedyPriorityAssignment 

(2) 
(3) 
(4) n(Tk) = pr i  ; /* tentative assignment */ 
(5 )  Rk = WCRT(rk); /* compute response time */ 
(6) 
(7) else h k  = GetBlockingLimit(.rk) ; 
(8) n(rk) = N ; /* reset */ 
(8)  end 

(9) 

(11)  end 

(1) uL=r;sL={) ;  
for pri = 1 to N do 

foreach r k  E UL do 

if R k  2 Dk then hk = 2.)k - R k  

/* Select the job with the largest heuristic value */ 
Select Tk E U L  s.t. (Vt :: rt E U L )  hk 2 hi 

(10) n(7k) = p i  ; S L  = SL f (71s) ; U L  = U L  - Tk  ; 

Figure 1. Greedy Priority Assignment Algo- 
rithm 

worst case response time is then compared with the job 
deadline. Now, there are two cases: 

If the computed response time is less than the dead- 
line, then this job is a “good” candidate. However, this 
does not guarantee that the job will be schedulable with 
the final assignment. This is because, in the preemption 
threshold assignment stage, a lower priority job may be 
assigned a threshold that is higher than this job, and can 
cause blocking. Therefore, we assign a heuristic value 
that is the maximum blocking that a job can tolerate while 
still meeting its deadline. This can be done by assigning 
a blocking term to the job, repeating the worst-case re- 
sponse time computation, and checking if it still meets 
the deadline. 

If, however, the computed response time is larger than 
the job deadline, then it is an indication that this priority is 
too low for the job. Note, however, that it is still possible 
for a job to be schedulable since it can be given a higher 
preemption threshold. So, in case there are no jobs in 
the first category, we want to choose the job that needs 
the smallest reduction in interference from higher priority 
jobs. Accordingly, we assign a heuristic value of Dk-Rk. 
Note that these values are negative, and therefore, no such 
job will be selected if there is a job in the first category. 

3.3. Algorithm C: Simulated Annealing 

Our final approach is the use of simulated annealing 
to find feasible scheduling attributes. Simulated anneal- 
ing is a global optimization technique that attempts to 
find the lowest point in an energy landscape [lo]. In de- 
veloping this algorithm, we again make use of the opti- 
mal preemption threshold assignment algorithm. Thus, 

29 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 



instead of searching over all possible priority and pre- 
emption threshold assignments, we only search over the 
space of priority assignments. The algorithm is presented 
in Figure 2, and described below. 

We use the deadline monotonic priority assignment as 
an initial starting point for the search. Simulated anneal- 
ing uses the notion of “energy” of a solution, and the ob- 
jective is to find a minimum energy solution. For any 
given priority assignment we calculate the energy of a 
solution by using a modified form of the optimal pre- 
emption threshold assignment algorithm. In this modi- 
fied algorithm, if no preemption threshold value makes 
a job feasible, then its preemption threshold is set to the 
maximum value. The energy of a job ~i is calculated as 
M a x ( 0 ,  R, - Di), and the energy of a solution is simply 
the sum of all job energies. Thus, if the energy of a job 
is 0, then the job is schedulable, and if the energy of a 
solution is 0, then the solution is feasible. Larger energy 
values indicate poorer solutions. 

The algorithm moves from one priority assignment to 
the next using a randomized scheme. First a new neigh- 
bour is generated by swapping the priorities of two ran- 
domly selected jobs. If the new solution has a lower 
energy then it is selected as the next candidate. If not, 
then the neighbour is selected as a candidate probabilis- 
tically. The probability of such upward energy jumps re- 
duces with a control parameter (C) - the temperature - 
which is slowly reduced. At each setting of the control 
parameter, the solution space is explored until a so-called 
thermal equilibrium is reached. In our implementation, a 
thermal equilibrium is reached when either the number of 
downward jumps exceeds Zog(2 * N) or when the number 
of solutions explored exceeds N 2 .  At any time if we find a 
solution with zero energy then we stop. Otherwise, the al- 
gorithm stops when the temperature is reduced to a point 
where there are virtually no upward or downward jumps 
- indicating that no feasible solution could be found. 

3.4. Performance Evaluation 

To assess the suitability of these algorithms, we have 
evaluated their performance on randomly generated job 
sets. We varied two parameters in the generation of the 
job sets: (1) the number of jobs n Jobs and (2)  maximum 
period for the jobs m a s p e r i o d .  For any given pair of 
nJobs and maxPeriod,  the job sets were generated as 
follows: For each job ~ i ,  we first randomly selected a pe- 
riod in the range [l, maxPeriod]  with a uniform prob- 
ability distribution. Then, we assigned a utilization Vi 
in the range [0.05,0.5], again with a uniform probability 
distribution. The computation time of the job was then 
assigned as Ci = Ti * Vi, and the deadline was set to Ti. 

We use breakdown utilization as a measure of schedula- 

(1) 
(2) 

(3) 
(4) 
(5) 
(6) 

Pold = Deadline monotonic priority ordering 
C = 2 * log(Number of Jobs) * Maximum Period 

Eoid = Energy Of Pold 
while ((CO > 0.01* Minimum Period) ) 

/ I  Starting Temperature 

while (Thermal equilibrium is not reached) 
Generate PneW , a neighbour of Pold by randomly 
swapping priorities of two jobs. 
En,, = Energy of Pnew 
if (Enew == 0) stop I /  We are done. 
else if En,, < Eold then 

(7) 
(8) 
(9) 
(10) Pold = Pnew ; Eold = Enew ; 

I/ Always take downward energy jumps 
(1 1) else 

(12) 

(13) 

(15) endif 
(16) endif 
(17) end 
(18) 
(19) end 

- ( E o l d  i n E n e w )  . 
/I  Upward energy jump; take it sometimes 
if (eZ 5 random(0,l)) then 

(14) Pold = Pnew ; EoId = Enew ; 

C = C * 0.96 ; /I Temperature Cooling 

Figure 2. Simulated Annealing Algorithm 

bility [ 1 11. The breakdown utilization represents the min- 
imum job set utilization at which the system is unschedu- 
lable. The utilization of a job set is varied by scaling the 
computation times of all jobs, and the breakdown utiliza- 
tion is found using binary search over job set utilization. 
Since we try the three algorithms in sequence, we only see 
if we can improve the breakdown utilization with algo- 
rithms B and C (in some cases, they may perform worse). 

Due to space limitations, we do not present detailed re- 
sults of our performance evaluation. Instead we present 
some of our observations from the results that are of in- 
terest. 

(1) Our approach can never perform worse than either 
pure preemptive scheduling or pure non-preemptive 
scheduling; this follows directly from Theorem 3.1, 
and the use of Algorithm A. 

(2) When the number of jobs is relatively small, e.g., 
5- 15, we observe that in many cases significant im- 
provement in schedulability is possible with our ap- 
proach. For example with nJobs = 10, we are 
able to improve breakdown utilization by as much 
as 15%. To illustrate the improvement in breakdown 
utilization, we look at the percentage (we used 100 
randomly generated job sets) of job sets for which 
the schedulability improvement was significant (say 

30 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 



Algorithm B Algorithm B+C 
maxPeriod > 5% > 10% > 5% > 10% 

100 28 47 14 

Table 1. Percentage of job sets show- 
ing significant schedulability improvements 
nJobs = 10 and maxPeriod = 10 and 100. 

(3) 

more than 5%). In Table 1, we present the results for 
nJobs = 10, with maxPeriod = 10 and 100 for 
illustration purposes. We show the number (percent- 
age) of jobs for which Algorithm B and C showed an 
improvement of more than 5 and 10% of breakdown 
utilization as compared to algorithm A. We can see 
that with our greedy algorithm, we can get a modest 
schedulability improvement (5- 10%) in a significant 
percentage of job sets. With simulated annealing 
we get modest schedulability improvement in almost 
half the job sets, and get significant schedulability 
improvement in a modest percentage of job sets. 
The schedulability improvement tends to decrease as 
the number of jobs is increased, such that with about 
50 jobs, the schedulability improvement is marginal 
in most cases (less than 2%). Since our algorithms 
are not optimal, and with large nJobs, running an 
exhaustive search is not possible, it is hard to say 
whether this lack of improvement is a limitation of 
our algorithms or whether we have reached the limi- 
tation of the scheduling model. In any case, this may 
be a moot point since in most cases (with larger num- 
ber of jobs) we observe the breakdown utilization to 
be quite high - 90% or more. 

4. Optimization of Implementation Model 

In this section we address the optimality problem of 
finding an implementation model such that the jobs can be 
partitioned into the minimum number of non-preemptive 
groups over all feasible implementation models. This 
problem may be viewed as a search over the space of fea- 
sible implementation models. Clearly, the problem is a 
non-trivial combinatorial optimization problem. One dif- 
ficulty in tackling this problem is how to search through 
the space of feasible implementation models. We use a 
decomposition approach to tackle this problem. We first 
present an optimal algorithm to find a valid job partition- 
ing that minimizes the number of non-preemptive groups 
when the scheduling attributes are already known. 

The optimal partitioning algorithm can be used in con- 
junction with the results of the feasibility problem in a 
straight-forward way. First, find a feasible set of schedul- 
ing attributes using the approach given in the previous 
section. Then, use the optimal partitioning algorithm 
to minimize the number of non-preemptive groups. Of 
course, this does not solve the original problem optimally, 
and indeed may be much worse than the optimal solution, 
since the synthesized feasible scheduling attributes were 
not aimed at minimizing preemption. Therefore, we use a 
more intelligent approach. We first synthesize a feasible 
set of scheduling attributes as before. Then, we refine the 
scheduling attributes so as to eliminate any unnecessary 
preemptability, while maintaining feasibility. Finally, we 
use the refined feasible scheduling attributes for optimal 
job partitioning. 

4.1. Optimal Job Partitioning 

We first begin with the situation when the scheduling 
attributes are already determined. In this case, we can par- 
tition jobs into non-preemptive groups such that the par- 
titioning is valid (Definition 2.2). Since many valid parti- 
tionings are possible, we try to find one that assigns jobs 
to a minimum number of non-preemptive groups. Recall 
that in a valid partitioning, if two jobs are assigned to the 
same group then they must be mutually non-preemptive. 

Definition 4.1 (Non-Preemptive Group) A set of jobs 
G = (rl,r2, . . . , rm} forms a non-preemptive group if 
for  every pair of jobs rj E G and Tk E G, rj and Tk are 
mutually non-preemptive. 

In Figure 3 we present Algorithm OPT-Partition 
that creates an optimal partitioning of jobs into non- 
preemptive groups. The algorithm begins by sorting 
the jobs in the non-decreasing order of their preemption 
thresholds, with ties broken arbitrarily. Let the sorted list 
be denoted as L. We then remove the first job (Tk) from 
this list and form a new group G. We will call Tk as the 
representative of the group. Then, we look at every other 
job and add any job rj into G if nj 5 Tk, i.e., it is mu- 
tually non-preemptive with rk. Also rj is removed from 
L. Note that, since L was already sorted by preemption 
threshold, it must be the case that Tk 5 yj .  Once all jobs 
have been examined, we have formed one non-preemptive 
group, with the remaining jobs in the list L. We reiterate 
this process of forming groups until no jobs remain in the 
list L. We now formally prove that the algorithm is correct 
(i.e., it produces a valid partitioning) and optimal (i.e., it 
creates the minimum number of groups). 

Theorem 4.1 Algorithm OPT-Partition produces valid 
partitioning of the job set into non-preemptive groups. 

31 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 



Algorithm: OPT-Partition 
(1) m = 0 ; I* number of groups */ 

/* Sort the jobs by y;, in non-decreasing order */ 
(2) L = SortJobsbyPreemptionThreshold(JobSet) ; 
(3) while (L != NULL) do 

/* Find the job with the smallest value of 7i */ 
(4) Tk = Head(L); G[m] = { T k } ;  L = L - Tk ; 
(5) 
(6) 

(8) endif 
(9) end 
(IO) m = m + 1; /*one more group */ 
(11) end 

foreach rj E L do 
if (nj 5 7 k )  then 

(7) G[m] = G[m] + { ~ j }  ; L = L -  ~j ; 

Figure 3. An Optimal Algorithm for Partition- 
ing a Job Set into Minimum Number of Non- 
Preemptive Groups 

Proof Clearly, the algorithm creates a partitioning, i.e., 
each job is placed into exactly one group. Therefore, we 
need to show that each group formed by the algorithm is 
a non-preemptive group. By definition, two jobs ri and 
rj are mutually non-preemptive if ri 5 yj and nj 5 yi. 
Let us look at the representative member Tk of a group G. 
Since the list of jobs is kept sorted by the threshold, and Tk 
is the head of the list, it must be the case that ("k 5 rj) for 
any rj E G. Therefore, we have X k  5 yk 5 rj. Also, if 
rj is added to G then ~j 5 yk. Thus, for any job rj E G, 
rj and rk are mutually non-preemptive. Now, consider 
any two jobs ri and Tj in G. We know that ri 5 yk 5 yi 
and nj 5 ̂ /k 5 yj. It follows that Ti 5 yj and nj 5 Ti. 

Theorem 4.2 Algorithm OPT-Partition is optimal. 

Proof We need to show that no other partitioning into 
non-preemptive groups can be done with a smaller num- 
ber of groups. Consider any two groups formed by the 
algorithm, and consider their representative members - 
say rj and Tk. Then, due to the nature of the algorithm, 
it must be the case that rj and Tk are not mutually non- 
preemptive. Therefore, they must be in separate non- 
preemptive groups in any partitioning of the job set into 
non-preemptive groups. Since this is true for each pair of 
representative group members, it is not possible to have a 
solution with fewer groups. 0 

4.2. Reducing Preemptability 

Now that we know how to partition a job set with fea- 
sible scheduling attributes into minimum number of non- 

preemptive groups, let us look at how to refine feasible 
scheduling attributes so as to reduce the number of groups 
created by Algorithm OPT-Partition. For this purpose, 
we use a simple heuristic strategy - we attempt to reduce 
any unnecessary preemptability that is introduced by the 
scheduling attributes. 

Note that the set of higher priority jobs that can preempt 
a job ri is determined by the job's preemption threshold 
yi. By increasing the value of yi, we can reduce the num- 
ber of jobs that can preempt ri. Suppose we increase the 
preemption threshold of q from a to b (a < b), then this 
change may result in increased response times for any job 
Tk, if a < Tk 5 b, since any such job may now incur a 
blocking from ri. We can safely increase the preemption 
threshold if the recomputed worst-case response times of 
these affected jobs are still no more than their deadlines. 

Using the idea given above, we try to increase the pre- 
emption threshold of each job to the maximum value that 
will still keep the job set schedulable. Figure 4 gives 
the algorithm that attempts to assign larger preemption 
threshold values to jobs. The algorithm considers one job 
at a time, starting from the highest priority job, and tries 
to assign it the largest threshold value that will still keep 
the system schedulable. We do this one step at a time, 
and check the response time of the affected job to ensure 
that the system stays schedulable. By going from highest 
priority job to the lowest priority job, we ensure that any 
change in the preemption threshold assignment in latter 
(lower priority) jobs cannot increase the assignment of a 
former (higher priority) job, and thus we only need to go 
through the list of jobs once. 

4.3. Performance Evaluation 

To evaluate the performance of our approach, we again 
used randomly generated job sets, as described in Sec- 
tion 3, and then used our algorithms to generate a feasible 
implementation model, minimizing the number of non- 
preemptive groups. Our results show that in many cases, 
we can reduce the number of non-preemptive groups sig- 
nificantly as compared to the preemptive scheduling case, 
where each job forms its own non-preemptive group. In 
Figure 5 ,  we show the number of groups generated by 
our approach when the number of jobs is varied from 10 
to 100, with maxPeriod = 100. To do this, we first 
found the breakdown utilization with preemptive schedul- 
ing. We plot both the average and the maximum number 
of groups produced by our approach; for comparison the 
straight line shows the number of groups with a purely 
preemptive approach. Similar results are achieved with 
other parameters, but are not shown here due to lack of 
space. 

As the plots show, the number of groups increase much 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 



Algorithm: Assign Maximum Preemption Thresholds 
/*Assumes that job priorities are bed, 
and a set of feasible preemption thresholds are assigned */ 
(1) 
(2)  
(3) 7; += 1; /* try a larger value */ 
(4) 

for (i = n down to 1) 
while (schedulable == TRUE) && (7; < n) 

Let ~j be the job such that rj = -yi. 

/* Calculate the worst-case response time of job j 
and compare it with deadline */ 

if (Rj > Dj)  then 
(5 )  Rj = WCRT(T~); 
(6) 
(7) 
(8) endif 
(9) end 
(10) schedulable = TRUE 
(11) end 

schedulable = FALSE ; 7; -= 1; 

Figure 4. Algorithm for Finding Maximum 
Preemption Threshold 

more slowly than the number of jobs (which would be 
the case for preemptive scheduling), indicating that as the 
number of jobs increase, there can be substantial reduc- 
tion in run-time overheads. For example, with n Jobs = 
100, we have less than 30 groups in all cases, and on an 
average only 14.3 groups. 

5. Implementation Architecture 

A successful use of our design approach requires that it 
be possible to efficiently implement a system constructed 
using this approach. This implies that the implementation 
must be consistent with the scheduling model and that the 
implementation must allow for jobs in a non-preemptive 
group to share the same run-time stack. The preemption 
threshold scheduling model is straightforward to imple- 
ment in a real-time kernel, and is in fact available in the 
ThreadX kernel’. Sharing of run-time stack from multi- 
ple jobs is perhaps trickier and requires that jobs do not 
have any state on the stack between multiple instances. 
The SSX kernel2 uses a single-shot execution model and 
thus naturally allows the sharing of stack between jobs in 
a non-preemptive group. 

We present here an alternate implementation architec- 
ture that can be used with most real-time kernels that 
support fixed priority preemptive scheduling in a rela- 
tively straightforward manner. In this implementation ar- 
chitecture, job arrivals are viewed as events. Each non- 

’ http://www.threadx.com 
2http://www.reaIogy.com 

1w 

50 

40 

30 

20 

10 

Preemption Threshold (Average] :+-: 
Preemption Threshold (Maximum e 

~ ~ ~~ 

10 20 30 40 50 60 70 80 90 1W 
Number of Jobs 

Figure 5. Number of Non-Preemptive 
Groups as a function of number of jobs, with 
maxPeriod = 100 

preemptive group is implemented as an event handling 
thread. A thread maintains an event queue where arriving 
events are queued. The queued events are processed in a 
run-to-completion manner, that is, processing of an event 
is not preempted by the arrival of another event on the 
thread’s event queue. If there are no queued events, the 
thread blocks itself awaiting new event arrivals. In this 
way, jobs in a non-preemptive group share the thread’s 
stack and are scheduled by the thread’s event handling 
loop in a non-preemptive manner. 

The event queue for each thread is maintained as a pri- 
ority queue, using event priorities. Therefore, whenever 
a thread selects the next event to process, it is always the 
highest priority queued event on the thread’s event queue. 
To ensure that this implementation is consistent with the 
scheduling model assumed in our approach, the thread 
priorities are dynamically managed as follows: 

0 When an event is queued at a thread, then the thread’s 
priority is set to the maximum of its current priority, 
and the priority of the event being queued, 

0 When a thread removes an event from its event queue 
to process, the thread priority is set to the preemption 
threshold of the event, 

0 When a thread finishes processing an event, it 
changes its priority to the highest priority pending 
event in its event queue. 

When thread priorities are dynamically managed as 
above, it is easy to show that at all times, the event (job) 
with the highest effective priority is executing on the CPU 
- as assumed in our scheduling model, We omit a formal 
proof due to lack of space. 

33 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 

http://www.threadx.com


6. Discussion and Concluding Remarks 

We have presented a design approach that allows us to 
automatically synthesize an efficient and feasible imple- 
mentation for a system design specified as a set of pe- 
riodic and sporadic jobs. The design approach is based 
on our earlier work on preemption threshold schedul- 
ing model that allows parametric control over the degree 
of preemptability in priority based systems. Using this 
model, we are able to synthesize implementations that 
have only as much preemptability as necessary to meet 
the timing requirements. 

An interesting benefit of integrating preemptive and 
non-preemptive scheduling is the resultant higher schedu- 
lability in many cases. More importantly, by controlling 
and eliminating any unnecessary preemptability, we can 
generate implementations with lower run-time overheads 
from preemptions and associated context switches. It also 
allows us to group jobs into non-preemptive groups that 
can then be run using a single shared stack. We show how 
such a system can be implemented in traditional real-time 
kernels that employ fixed priority scheduling. 

While we used a very simple design model in this pa- 
per - using independent periodic and sporadic jobs - our 
approach is motivated by our earlier work in integrating 
commercial strength object-oriented design methods and 
schedulability analysis techniques [ 14, 151 and is a logical 
continuation of that work. The simplified design model 
enabled us to focus on the essentials of our approach, 
rather than getting entangled in the many details that need 
to be accommodated with a more complex design model. 
An extension of this work for more general models (such 
as those used in industrial strength object-oriented meth- 
ods) can be found in [21]. 

References 

[ 11 M. Awad, J. kuusela, and J. Ziegler. Object-Oriented Tech- 
nology for Real-Time Systems: A Practical Approach us- 
ing OMT and Fusion. Prentice Hall, 1996. 

[2] A. Bums and A. J. Wellings. HRT-HOOD: A Design 
Method for Hard Real-Time. Real-Time Systems, 6( 1):73- 
114,1994. 

How Embed- 
ded Applications using an RTOS can stay within On-chip 
Memory Limits. In Proceedings, Euromicro Conference 
on Real-Time Systems, Work-In-Progress Session, June 
2000. 

[4] B. P. Douglas. Doing Hard Time: Developing Real- 
Time Systems with Objects, frameworks, and Patterns. 
Addison-Wesley, 1999. 

Preemptive 
and Non-Preemptive Real-Time Uni-Processor Schedul- 
ing. Technical Report No 2966, INRIA, France, sep 1996. 

[3] R. David, N. Memam, and N. Tracey. 

[5]  L. George, N. Rivierre, and M. Spuri. 

[6] H. Gomaa. Software Design Methods for Concurrent and 
Real-Time Systems. Addison-Wesley Publishing Com- 
pany, 1993. 

[7] M. Harbour, M. Klein, and J. Lehoczky. Fixed Priority 
Scheduling of Periodic Tasks with Varying Execution Pri- 
ority. In Proceedings, IEEE Real-Time Systems Sympo- 
sium, pages 116-128, December 1991. 

[8] K. Jeffay. Scheduling Sporadic Tasks with Shared Re- 
sources in Hard-Real-Time Systems. In Proceedings, 
IEEE Real-Time Systems Symposium, December 1992. 

[9] P. Karvelas. Schedulability Analysis and Automated Im- 
plementation of Real-Time Object-Oriented Design Mod- 
els. Master’s thesis, Concordia University, May 2000. 

[lo] S .  Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza- 
tion by simulated annealing. Science, 220:671-680, 1983. 

111 J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic 
Scheduling Algorithm: Exact Characterization and Aver- 
age Case Behavior. In Proceedings of IEEE Real-Time 
Systems Symposium, pages 166-171. IEEE Computer So- 
ciety Press, Dec. 1989. 

121 C. Liu and J. Layland. Scheduling Algorithm for Multi- 
programming in a Hard Real-Time Environment. Journal 
of the ACM, 20(1):46-61, Jan. 1973. 

131 M. Saksena, P. Freedman, and P. Rodziewicz. Guide- 
lines for Automated Implementation of Executable Object 
Oriented Models for Real-Time Embedded Contol Sys- 
tems. In Proceedings, IEEE Real-Time Systems Sympo- 
sium, pages 240-251, December 1997. 

[ 141 M. Saksena and P. Karvelas. Designing for Schedulability: 
Integrating Schedulability Analysis with Object-Oriented 
Design. In Proceedings, Euromicro Conference on Real- 
Time Systems, June 2000. 

1151 M. Saksena, P. Karvelas, and Y Wang. Automatic Syn- 
thesis of Multi-Tasking Implementations from Real -Time 
Object-Oriented Models. In Proceedings, IEEE Inter- 
national Symposium on Object-Oriented Real-Zme Dis- 
tributed Computing, March 2000. 

[16] M. Saksena, A. Ptak, P. Freedman, and P. Rodziewicz. 
Schedulability Analysis for Automated Implementations 
of Real-Time Object-Oriented Models. In Proceedings, 
IEEE Real-Time Systems Symposium, December 1998. 

[17] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object- 
Oriented Modeling. John Wiley and Sons, 1994. 

[18] S .  A. Stolper. Streamlined Design Approach Lands Mars 
Pathfinder. IEEE Software, September 1999. 

[19] K. Tindell, A. Bums, and A. Wellings. An Extendible 
Approach For Analysing Fixed Priority Hard Real-Time 
Tasks. The Journal of Real-Time Systems, 6(2): 133-152, 
Mar. 1994. 

[20] S .  Vestal and P. Binns. Scheduling and Communication in 
MetaH. In Proceedings, IEEE Real-Time Systems Sympo- 
sium, 1993. 

[21] Y. Wang. Real-Time System Design using Preemption 
Thresholds. PhD thesis, Concordia University, Montreal, 
2000. 

[22] Y. Wang and M. Saksena. Fixed Priority Scheduling with 
Preemption Threshold. In Proceedings, IEEE Interna- 
tional Conference on Real-Time Computing Systems and 
Applications, December 1999. 

34 

Authorized licensed use limited to: North Carolina State University. Downloaded on March 15, 2009 at 23:24 from IEEE Xplore.  Restrictions apply. 


