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Abstra& 
As embedded systems geting increasLogly complex, 

preemption overheads b m e  a serious load problem for 
many miemhipbased application specffic systems, and 
s o ” e s  may even jeopardize the system schedulabllity. 
This paper presents a dynamic preemption threshold 
scheduling (DPT) that integrates preemption thmhold 
scheduling into the earliest deadline first. The DPT scheduling 
can effectively reduce context switching by thresds ssslgnment 
and changing task dynamic preemption threshold at runtime. 
Meanwhile, because the algorithm is based on dynamic 
scheduling, it can achieve higher pmxssar utilizstion with 
relatively low cos18 in preemption switching and memory 
requirements. The DlT scheduling can also perfectly schedule 
a mixed task set with preemptive and non-preemptive tasks, 
and subsumes both as special caws. 
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1. Introduction 
* iir 

Real-time systems are a type of systems whose perfect 
control depends on not only correct calculating results but 
also the completing time of control flows, that is, each 
control flow must complete before specified time 
constraints. Since Liu & Layand proposed rate-monotonic 
(RM) and earliest deadline first (EDF) scheduling in their 
classical work [I], the study on preemptive scheduling is 
almost equivalent to the study on real-time scheduling 
algorithm. Even it is believed that kernel mechanisms of 
real-time systems must have preemptive function. Though 
preemptive schedulers have more advantages than 
non-preemptive schedulers, such as higher CPU utilization, 
flexible scheduling, excessive context switching overheads 
and more memory requirements and are also increased at 
runtime that undermine these advantages. 

In the recent decades, there appears a new trend, 
application specific operating systems (ASOS), in 
embedded systems developing [2,3]. ASOS is oriented 
specific application and suits web development, which 
often belongs to systems on chip (SOC). One key theme of 
ASOS is to provide higher performance and lower cost. 
Hence, it demands that resources of both hard and soft ware 
of the system are reconfigurable and reusable from design 
to runtime. 

According to the basic demands of SOC. in this paper 
we present a novel scheduling algorithm, named dynamic 
preemption threshold (abbreviated DFT) scheduling, which 
integrates preemption threshold scheduling (FTS) into the 
EDF. The DIT algorithm can perfectly schedule a mixed 
task set with preemptive and non-preemptive tasks, and 
subsumes both as special cases. Thus .it remains the 
scheduling flexibility and higher processor utilization, and 
also decreases unnecessary context switching and memory 
requirements at runtime. 

The rest of the paper is organized as follows. Section 2 
introduces some previous related work. Section 3 presents 
our scheduling model. Section 4 contains the detail on how 
to calculate preemption threshold. Section 5 ends the paper 
with some concluding remarks. 

2. Related work 
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In applying scheduling theory to practice, Bums & 
Wellings observed the impact of context switching to 
preemptive scheduling and gave task execution diagram 
with overheads (see Figure 1). From Figure 1, it is easy to 
see that context switching overheads become significant 
when multi-tasking incurs or the task granularity i s  small. 
These costs may jeopardize the system schedulability. 

To decrease the multi-context-switching, a scheduling 
with preemption threshold (ITS) was presented in [4,5]. 
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Figure 1. Task execution time with overheads 
basic priority ni by an optimal priority assignment 
algorithm and a preemption threshold pi with pi 2 n j .  
When task is not executing, its priority is equal to its basic 
priority; and when it is under execution, its priority 
simultaneously raises to its preemption threshold. In other 
words, when a task wants to interrupt another executing 
task, its basic priority must be higher than the preemption 
threshold of the executing task. This mechanism has been 
successful in implementing in the SSX kemel (from 
REALOGY) and the ThreadX kernel (from Express Logic). 
In essence, the FTS is a dual priority algorithm, which can 
automatically generate an implementation model with 
multi-thread from a design model [41. It is easy to provides 
an effective approach to automatic implementation of 
ROOM-based (Real-time Object Oriented Modeling) 
designs using PTS [6,7]. Whereas since the PTS is based on 
static priority scheduling, the processor utilization can not 
be too higher. For example, there is a task set characterized 
in Table 1, which utilization is 100%. Under FTS algorithm, 
Task3 can not meet its deadline no maner how to raise its 
preemption threshold. 

Table 1. The definition of a task set 
I Name I Execution I Period I Relative I Stack I 

Task3 I 3 1  18 1 18 I 40 
Task4 I 6 1  20 I 20 I 70 
Using EDF scheduling the task set is schedulable, but 

the amount of context switching and the memory 
requirements are increased [see Figure 2.,4]. However, if 
Taskl and Task2 are non-preemptive, the task set is still 
schedulable and the overheads and the memory 
requirements are accordingly decreased [see Figure 2.B]. 
Note that the cost at runtime can be further reduced. Our 
fundamental motivation is to develop a scheduling 
algorithm based EDF, which can achieve higher processor 
utilization in comparison with the static scheduling and 
meanwhile minimizes the context switching. 

Having observed the similarity between the stack 
resource policy and FTS, Gai et al. presented stack resource 
policy with threshold (SRFT)[8]. The SRFT gives an 
approach to transform a static model to dynamic model 
seamlessly. From above analysis and Figure 2, it is easy to 
see that the reduction of task preemptions accompanies 
with the reduction of memory requirements. The goal of 
SRFT is just for minimizing RAM memory requirements, 
so the overheads may not be minimal. 

The scheduling presented here extends FTS and SRFT 
at many aspects. First, the DPT scheduling can achieve 
greater processor utilization than PTS, theoretically even up 
to all of a processor capacity. Second, the mechanism of the 
DFT works by the comparison between preemption 
threshold and preemption level of various tasks; however, 
FTS do it by the difference between preemption threshold 
and the basic priority of tasks. Third, in contrast to SRFT, 
the main goal of the DPT is to minimize context switching 
instead of achieving the smallest stack space in SRFT. The 
preemption threshold in the DFT is changeable unlike that 
in FTS and SRFT. which is fixed at the whole runtime. 

t 

Figure 2. The difference between preemptive and non-preemptive scheduling 
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3. The model 

3.1. Basic terminology 

The key theme of a scheduling is to provide a group of 
rules that determine which task can be executed at each 
moment to meet its own time constraints. In essence, a task 
is a series of instructions to complete a relative independent 
function. A task, Ti, can be characterized by 4-tuple 
(S&D,Pi), where Si is the release time, Cj is the maximum 
execution time each of its cycles, Djis its relative deadline, 
and Pi is a constant interval between requests for periodic 
tasks and a minimum interval between request for sporadic 
tasks. To distinguish from the relative deadline, di is used 
to refer to an absolute deadline. The task set il , 
i l = ( T ( C ~ : , D ~ , e ) : 0 9 i < n ; n ~ N j  , consists of n 
independent tasks. Tasks of real-time systems are 
characterized with stringent timing constraints, that is, each 
task must meet its deadline. A system is said schedulable if 
all deadlines of tasks requests are met. 

A job is an instance of a task, i.e., a request of the task. 
We denote the k" request of task T. by Ji ,r ,  i.e., the 

k" job. If tk and tk+, are the release time of jobs 
and Jj,k+, respectively, then task is period task when 
tt+, = t ,  +e ; and task T. is sporadic task when 
ft+, 2 t, + 2 .  A task must be in one of three states at any 
runtime of a processor: passive, prepared and executing. 
The passive denotes that the task hasn't been released yet, 
or it has already completed its current period's workload. 
The prepared denotes that the task has been released, and 
has not started execution of its current period's workload. 
The executing means that the task has captured CPU, that is, 
it is under execution. Our task model is periodic or sporadic 
and is scheduled on uni-processor. 

3.2. Dynamic preemption threshold policy 

In this section, we describe the dynamic preemption 
threshold policy in terms different from ITS proposed by 
Saksena & Wang [6, 111. The dynamic preemption 
threshold mechanism changes preemption level, rather than 
the basic priority nj in various task states to determine 
which task is executed currently. The mechanism is 
elaborated as follows: 

First, each task I: is given a basic priority ni 
online using EDF meanwhile, every task is assigned a 
preemption level qj which is inversely proportional tn the 

relative deadline D,:, i.e. qi - ; in addition, every task 
is assigned preemption threshold p, with pi 2 q j ,  of 
which calculation includes initial and dynamic preemption 
thresholds. The various jobs of a same task have the 
identical preemption level and identical initial preemption 
threshold, but the dynamic preemption thresholds are 
different. In our model assume that time is discrete and is 
indexed by the natural numbers. 

Each task is assigned different basic priority ni at 
different run time by EDF. Because EDF is optimal for 
synchronous and asynchronous tasks, the dynamic 
preemption threshold can optimally assign task priority 
online. Unlike the PTS assigns a fixed priority for each task 
by another optimal algorithm. If a task is in the passive or 
prepared states, the decision whether to be scheduled 
depends its preemption level, whereas if it is executing, its 
preemption threshold works. For instance, if task Ti 
wants to preempt task T , these conditions, ni > ni and 
pi > p, , must be satisfied. The FCFS (first come fust 

service) breaks the identical deadline tie of tasks. 
Theorem Z:Ataskset Q = ( T . ( C . , P . ) : l < i < n )  sortedin 

non-increasing order by preemption level is schedulable 
under dynamic preemption threshold scheduling, if it 
satisfies condition'( 1) and (2). 

I l l  

Where 

'={:-' ;others 
; 3 k , l S k L i ; p j 2 p k  

The proof is skipped over for limit of the paper length. 

33. Thresholds assignment 

The introduction of thread is a useful performance to 
create ROOM-based implementation models [6,7]. Now we 
describe a definition which is tightly related to the 
assignment of thread. 
Definition I: Under dynamic preemption threshold, task 

T. and T, are mutually non-preemptive if qj < p i  and 

A thread is a subset of a task set within which all tasks 
must be mutually non-preemptive. To find a method to 

PjSPi. 
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partition mutually non-preemptive tasks into a thread is 
called thread assignment. If the numbers of threads are 
minimal under a assignment rule, the assignment method is 
believed to be optimal. Imitating the assignment of 
minimum number of thread in 14.51, we present a thread 
assignment for dynamic preemption threshold, named 
CreateMinThreadpigure.31. The CreateMinThread 
algorithm is different from the thread assignment in PTS: 
The latter assigns threads by the comparison between 
threshold and basic priority of tasks from low to high 
threshold, whereas the former works by the difference 
between preemption level and preemption threshold from 
high to low preemption level. Thus, it is convenient for 
calculating preemption power in dynamic threshold 
calculation. The algorithm assumes that all preemption 
threshold of the task set are calculated. The task set is 
sorted in non- increasing order by the initial preemption 
level. From the first task, mutually non-preemptive tasks 
itre assigned the same thread until no tasks remain the 
sorted list. Algorithm Assign-Thread is optimal (proof is 
SU 

F 

4. 

In this section we will describe preemption threshold 
calculations that are the key parts for DFT scheduling. 

Preemption threshold calculation consists of two partitions: 
initial preemption threshold calculation and dynamic 
preemption threshold calculation. We will elaborate the 
calculations in the following part of this section. 

4.1. Initial preemption threshold calculation 

The initial preemption threshold belongs static priority 
and is calculated "offline" by the systems. The algorithm 
for calculating initial preemption threshold works as 
follows (see Figure 4): 

Step 1 : To sorted all tasks in non-increasing order by 
their preemption level and let p, = p, . 

Step 2: To test the schedulability of the task set using 
condition (1). 

Step 3: To raise the task preemption threshold starting 
from the last task T ,  and to test the schedulabilty of the 
task'set using condition (2) until the condition is not 
satisfied. The final preemption threshold is equal to the last 

ure 4. The algorithm of calculating initial preemption 
threshold 

4.2. Dynamic preemption threshold calculation 

Except a 4-tuple description for a task, each job of a 
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Name 

task is defined by 2-tuple where yj,k is .the 

release time of job Ji ,x ,  i.e. the kIh release time of task 

T ;  is the earliest time, relative to the release time 
yi,* , that job Ji,k is scheduled. 

In step 3 of calculating initial preemption threshold, if 
condition (2) is not satisfied when the preemption threshold 
of =do,?* -8, 
which is named preemption energy of task T to Th ; If 
two mutually non-preemptive tasks are partitioned into 
different threads by a thread assignment algorithm, the 
preemption energy between them is equal to zero. Only 
tasks belonging different threads need to calculate 

preemption energy. In the worst case, - numbers of 

preemption energies need to be calculated. The preemption 
energy acts an important part of applying dynamic 
preemption threshold mechanism. The work of calculating 
dynamic preemption threshold is elaborated as follow. 

Suppose that there are two tasks Tj and T come from 
different threads and 9j > p i ,  that is, Tj may preempt 

q .  When the k" job of task q.,  J>,k (yj,x,Oj,x), is 

executing, the h" job of Tj , J j ,h (y j ,k ,O j ,k ) ,  is released, 

i.e. yj,h >yi,x +8i,t . To test the inequality 
7i,h-(7,,+ej., + I ) L & , ?  If the test of the inequality is true, 

the preemption threshold of T is raised to the preemption 
level of T, , i.e. p ,  =qj . In other words, Tj can not 

preempt T . Inversely, if the result of the test is false, the 
preemption threshold of T is unchanged and until the job 

completes. In other words, if a job of task T is 

preempt one time, the preemption threshold is unchanged 
in the same job. 

As is mentioned above, it is easy to see that when the 
preemption threshold of each task is always equal to its 

is &sed to A ,  where h < i  , let 

n(n - 1) 
2 

q P, t,,, 

Task2 
Task3 
Task4 

3 4 
' 2  ' 4 

1 3 e,,, = 0 54.3 = 0 (4.1 = 1 

are Gl={Taskl, Ta&, Task31 G2={Task4). -If the 
preemption between tasks is determined purely by initial 
preemption thresholds, that is, tasks is mutually 
non-preemptive in the same thread, the Task4 can be easily 
interrupted by the other tasks in another thread (see Figure 
5.A). However, if to add dynamic preemption threshold 
factor, Task4 will not be preempted Task2 and Task3, and 
whether to be preempted by Taskl by the value of 
preemption energy at run time. From the Figure 6 we know 

Y ~ . ~  = io, Y ~ , ~  = 8, e,, = o 
It follows 

Hence, under DPT scheduling, the preemption 
threshold of job J4,, is raised to 4, and Taskl can not 
preempt it, accordingly reducing a time task switching (see 
Figure 5.B). 

r .. ,. c .  i vj p r 
j If U> 

A .  I. I .  , 
(s) 

Figure 5.  Two different schedules for the same task set: (A) pure thread; (B) dynamic preemption threshold. 
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5. Conclusions 

With the rapidly developing of ASOS based on system 
on chip, the preemption overheads that are contributed by 
multi-tasking become non-trivial. The DF" scheduling can 
reduce the preemption by two way: thread assignment and 
threshold re-calculation at runtime. The algorithm also 
ensures that mutually non-preemptive tasks that are 
partitioned different threads are still mutually 
non-preemptive at runtime. The DFT scheduling can 
achieve higher utilization with low runtime cost than FTS. 
The DFT algorithm also provides a new way to transform 
static scheduling to dynamic scheduling seamlessly. 

Finally, we note that the study on the algorithm is 
needed to go further in the future work. Because many 
application specific systems for complex software are 
applied to uncontrolled environment, the robust DFT 
scheduling should be provided. 
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