CSC 714: Final Project Report

Preemption Threshold Aware Task Scheduling Simulator

http://www4.ncsu.edu/~sykang/

4/21/2009

North Carolina State University
Sangyeol Kang (sykang@ncsu.edu)
Kinjal Bhavsar (kabhavsa@ncsu.edu)

Overview

Project Description
A task scheduling simulator for timing analysis of the various task sets with different scheduling
policies was implemented and tested. The simulator supports the various scheduling policies like
Rate Monotonic, deadline monotonic and EDF, widely used for scheduling real time applications.
It simulates the task execution for the time period, and then it outputs the time based
representation of the scheduling of set of inputs tasks. It also calculates the optimal preemption
threshold values for the task sets, and uses it to prevent the unnecessary preemptions.

Motivation

Scheduling real-time tasks is complicated work since it requires pre-computed information
about the task’s timing properties. Although we know the system’s timing properties, scheduling
tasks is highly concentrated mental work. Moreover the system designer is responsible to see
that system meets real time constraints. For guaranteeing feasibility of generated scheduling,
several static and dynamic priority scheduling algorithms and corresponding schedulability tests
are introduced such as Rate-Monotonic (RM), Deadline-Monotonic (DM) and Earliest Deadline
First (EDF).

For developing a system with real time constraints, the preemptability is considered a necessary
requirement. But in reality, there is execution overhead associated with the preemptions. And
as the number of tasks in task set are increased, the run time overheads increases exponentially.
The Preemption Threshold Scheduling (PTS) is suggested to help fixed-priority scheduling to
improve the overall system’s timing performance by removing unwanted preemptions [2]. The
preemption threshold brings one more priority, preemption threshold, to the system. While the
regular priority is used when scheduling the task, preemption threshold is used when being
preempted by another task. Therefore while meeting task’s deadline, we reduce useless
preemption, which frequently occurs with traditional fixed priority scheduling. PTS slightly
lengthen the execution time of higher tasks, but it reduces that of lower tasks. This helps
enhancing the response time and utilization of overall system. Also it improves the scalability of
the system.

Introduction
Many embedded systems require hard or soft real-time execution that must meet rigid timing
constraints. Further complicating the issue is that for a variety of reasons, most of these same
embedded systems have very limited processing power.

Real-time systems theory advocates the use of an appropriate scheduling algorithm and
performing a schedulability analysis prior to building the system. Adherence to this theory alone

http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Scheduling_%28computing%29

does not lead to working embedded systems, and thus use of this theory is often dismissed by
practitioners.

Practitioners, on the other hand, spend days - if not weeks - of testing and debugging hard-to-
find and difficult-to- replicate problems because their system is not performing to specifications.
Often, these problems are related to the system's timing, because functional testing was done
using good tools, and the system usually produces a correct response.

There exists a balance between theory and practice, where proper design of real-time code
enables the real-time analysis of it. Systematic techniques for measuring execution time can
then be used alongside the guidelines provided by real-time systems theory to help an engineer
design, analyze, and if necessary quickly fix timing problems in real-time embedded systems.

Several other activities of the development process can benefit from estimating and measuring
execution time using the simulator described here. This includes debugging hard-to-find timing
errors that result in hiccups in the system, estimating processing needs of software, and
determining the hardware needs when enhancing functionality of an existing system or reusing
code in subsequent generations of embedded systems.

Scheduling Algo

Dynamic{online, Static (offline,

priority driven) clock driven)

Static Priority Dynamic Priority
(RM, DM, Fixed) (EDF, LLF)

Also to make real time scheduling possible, there are various scheduling algorithms published.
They can be classified as preemptive or non-preemptive, and fixed priority or dynamic priority
scheduling. Usually the Fixed priority algorithms are preferred due to their qualities like the ease
of use and simple ways to analyze the time response. On the other hand the static priority
scheduler cannot provide the optimal utilization of the system. It guarantees the schedulability
only under suboptimal utilizations, and above that; the designer needs to hand optimize and
simulate the results to see whether it meets real time constraints. For example, general version
of RMA cannot commit to the feasibility of a system that uses more than 69% of available CPU
time. If the architect falls back on old fashioned time-line analysis, RMA can be pushed all the
way to 100% utilization, but we're into tedious hand simulation, not elegant algebra. While the
dynamic priority scheduling makes the effective utilization of the resources. But it is very
complex and makes the timing analysis really difficult.

http://en.wikipedia.org/wiki/Debugging

Also the common belief is that the preemptive schedulers give better schedulability than non
preemptive schedulers. But it is not always true, i.e. it can be proved that under the context of
fixed priority scheduling, preemptive schedulers do not dominate non-preemptive schedulers.
The schedulability of a task set under non-preemptive scheduling does not imply the
schedulability of the task set under preemptive scheduling, and vice-versa. Also for the sake of
timing analysis, it is assumed that the context switching costs are zero, while in reality there are
runtime overheads associated with it.

So the best way to schedule is having a hybrid policy to take advantage of both preemptive and
non-preemptive schedulers. The idea of preemption threshold extends this concept. It
introduces another priority level into the system called the preemption threshold. The tasks are
scheduled normally according to their priorities. But while running, if another task tries to
preempt, then the priority of the new task is checked with the preemption threshold of the
running task. This way we can reduce the costs at runtime, but still achieving the optimal usage
of the system.

Design

Problem Description
The schedulability can be enhanced by using preemption thresholds. But the questions remains
that how to find the optimal assignment of task priorities and preemption thresholds.

We consider a set of N independent tasks, each having its computation time, period and
deadline. The tasks are independent i.e. no resource sharing and thus no blocking effects. The
tasks do not suspend themselves and the context switching overheads are negligible or zero. We
also assign priorities such that two tasks do not have the same priorities. The lower number
denotes the higher priority.

The run time model employed with preemption threshold is fixed priority and preemptive
scheduling. Whenever task starts running, its priority level is changed to its preemption
threshold, and it is preserved at that level until it completes its execution.

Solution Approach

= For a given set of tasks, the priority for each task is assigned according to the scheduling
policy decided by the user. The initial preemption thresholds are set by the initial
priority.

= |teratively go through all the tasks in the task set, assign them higher preemption
thresholds and compute the response time for the task and higher priority’s task (since
due to the preemption threshold, higher priority task’s execution and scheduling will be
affected). If these two tasks are schedulable, raise the preemption threshold.

= Finally simulate the tasks with assigned priorities and find the worst case response times
for the each individual task.

Here is the algorithm for assigning the Preemption Thresholds to the tasks.

Overall Accomplishments
e Designed and implemented the scheduling simulator which reads the formatted input from
user and based on the parameters passed, it schedules the set of tasks for the time period.
e Designed and implemented the Preemption threshold finding algorithm, and integrated it
with the simulator.
e Implemented the graphical representation of the clock based scheduling.

Issues Solved

Ready Task Queue
While implementing the simulator, other issues are minor or software bugs which were solved
without difficulty except the issue about ready task queue. Initially the simulator has maintained
only the current running task’s information. But while comparing the simulated results to
already published test cases, it was noticed that the single information from the current running
task is not enough for the simulation. The triggered example is shown below, which is from [3].

e
AR B]
i

In this example, the tasks are listed in priority order; taskl is the highest and the task3 is the
lowest. The preemption threshold values are 1, 1 and 2 respectively for taskl, task2 and task3.
At 90™ scheduler tic, task3’s job should be resumed since its preemption threshold value is 2.
But since the simulator maintains only the current running task’s priority (here 1 from taskl) as
the system priority, task2 is executed rather than task3 resumes its execution. So the simulator
is modified to keep the queue for keeping ready task list.

Results

Usage
The simulator can accept a one input file which describes the task set and simulator parameters.
For example,

> sched in_wang.txt

The example of the input file is shown below.

=0s% cat in wang.txt -
Simulation Time= 560

Starthisplay= 0
EndDbisplay= 100

Scheme= DM

Preemptive= Tes

FPT3= Yes

TaskIDl Neme Phase Period WCET BCET Deadline
L] s u] 14 4 4 10

1 E u] 16 4 4 16

2 c u] 40 7 7 20

=055

Simulation Time is the total number of scheduler tics for simulation. StartDisplay and EndDisplay
specify the starting point and end point of displaying window for the graphical representation of
the simulation in terms of scheduler tics. Scheme specifies the simulated scheduling scheme,
which is one of RM, DM and EDF. If Preemptive is set to Yes, the scheduler will allows
preemptive scheduling, and vice versa. If PTS is set to Yes, only for preemptive scheduling,
preemption threshold scheduling will be enabled.

After simulator parameters, the target tasks will be given. All values are represented in
scheduler tics.

Output
With the given input file, the simulator will generate two kinds of output; simulation statistics
and the GNUPLOT script named “plot.do” and the scheduling data, named “TASK-[task ID].dat”,
which will be fed into the GNUPLOT script. The script will generate the graphical representation
of the scheduling in postscript format named “results.ps” with help of GNUPLOT.

> gnuplot plot.do

eo0s% . /sched in wang.txt ~
**% Task Scheduling Sirmlator +%

— Simulated # of scheduler tics: 560

— Sirmlated scheduling scheme: DM, PTS

+ Given task set: in wang.txt

TaskID Phase Period WCET BCET Deadline Task Natoe
a u] 14 4 4 10 A
1 u] 16] 4 16 E
2 u] 40 7 7 20 [

+ Simulation statistics

TaskID #ijohs #jobhs done #missed DL Friority
] 205 205] 1
1 180 180 a 2
2 = 73 2 3

+ Simulated Preemption Threshold
- Task 0 => 1
- Task 1 =+ 1
- Task 2 => 1
+ Zimulated WCRT
- Task 0O - 9

- Task 1 - &
- Task 2 - 15
E05% I

<

| Adobe Reader - [results. pdf]

I Fille Edit “iew Document Tools Window Help
’_b B =1 Q ﬁ : 'I\"_Ih‘]} [@ @\' __:J g|@ I94% !' ® _D‘.-IQHBID":Y?“ :Find:'_ | A Previous et
[>
@ A
© b
=
5
[
A Scheduling (DM, PTS)
L e o L e o e O e e B e e e
A
| Y. [A | Y. | Y | [- | X | |
0 5 10 15 20 25 El] 35 40 45 50 55 ED &5 70 5 ED 85 %0 as b
Scheduler Tick
E Scheduling (DM, PTS)
LN L L L L L 0 L N L L L L I L L L L L L LB i
II\WmIIIIIII i il IR NI BT WA | TS A Pl IV AR Loy o by o 1Y
o 5 10 15 20 25 El) 35 40 45 50 55 &0 65 T0 5 ED 85 %0 95 pUT]
“ Scheduler Tick
5
£
= C Scheduling (DM, PTS)
kS
7/ e o L L e o B B B L b o s oy e e e B
£ A
T
£
=
k=3
=
| |
e taaa g NNV AITETIrE NI ATS AT SRS A ol b ¥ b b by b a by L1
0 £ 10 15 20 b3 30 El 40 45] S 60 65 70 s ED as 0 a5 100 2
| tofr | Q0 © | [@ |

To verify the functionality of the implemented simulator, several test cases are test. The above
example is from [3]. Another example shown below is from the class lecture note.

Rate-monotonic Scheduling iwu mavayiang

Priority Definition: Tasks with smaller periods have higher priority.

Example Schedule: Three tasks, T, = (3,0.5), T, = (4.1), Ty = (6.2).

'I'1g||p||p||p||$

;
h
B

CSC 714 2

Since the simulator can work only with integer values, all values are multiplied by 2, and the
following graph is obtained as the simulation result.

#1 Adobe Reader - [results. pdf] B@Hz|
L File Edt view Documsnt Tools Window Help NEE:
TH SN ‘j| LR ®\"jl o © sz |- ® (0% @ren- | YN Fndir | |4 Previous it text

[Pages ™|
=

A Scheduling (RM, Preemptive)

m I =B =B = B

9 5 10 15 2

Scheduler Tick

B Scheduling (RM, Preemptive)

9 5 10 15 20

Scheduler Tick

C Scheduling (RM, Preemptive]

N E Bl =

a H 10 15 20

Scheduler Tick

[comments & atachments

a 5 lof1 [+ ‘1

Individual Contributions

By Sangyeol Kang (sykang)

e Implementation

Frontend of simulator

Output generator

Preemption Threshold Assigning Algorithm
e Design

Time-based task scheduling simulator for fixed priority scheduling
e Test and verification

By Kinjal Bhavsar (kabhavsa)

e Implementation
Time-based task scheduling simulator for fixed priority scheduling
Time-based task scheduling simulator for dynamic priority scheduling
Integration of individual implementation
e Design
Time-based task scheduling simulator for fixed priority scheduling
Time-based task scheduling simulator for dynamic priority scheduling
e Test and Verification

Future Work

The idea of the preemption threshold is limited to the fixed priority systems. It can be extended
to dynamic priority scheduling i.e. EDF. The DPT scheduling can effectively reduce context switching by
threads assignment and changing task dynamic preemption threshold at runtime. Meanwhile, because
the algorithm is based on dynamic scheduling, it can achieve higher processor utilization with relatively
low costs in preemption switching and memory requirements. The DPT scheduling can also perfectly
schedule a mixed task set with preemptive and non-preemptive tasks, and subsumes both as special
cases.

References
[1] Jane W. S. Liu: Real-Time Systems, Prentice Hall, 2000 (ISBN-10: 0130996513)

[2] M. Saksena and Y. Wang: Scalable Real-Time System Design Using Preemption Thresholds, In
Proceedings of IEEE Real-Time Systems Symposium, pages 25-36, November 2000.

[3]1 Y. Wang and M. Saksena: Scheduling Fixed-Priority Tasks with Preemption Threshold, In Real-Time
Computing Systems and Applications, pages 328-335, December 1999.

[4] D. He, F. Wang, W. Li, and X. Zhang: Hybrid earliest deadline first/preemption threshold scheduling
for real-time systems, In proceedings of 2004 International Conference on Machine Learning and
Cybernetics, page(s): 433- 438, vol.1 Aug. 2004.

	Overview
	Project Description
	Motivation
	Introduction

	Design
	Problem Description
	Solution Approach
	Overall Accomplishments

	Issues Solved
	Ready Task Queue

	Results
	Usage
	Output

	Individual Contributions
	By Sangyeol Kang (sykang)
	By Kinjal Bhavsar (kabhavsa)

	Future Work
	References

