
Contiki Programming Course: Hands-On Session Notes

Adam Dunkels, Fredrik̈Osterlind
adam@sics.se, fros@sics.se

Swedish Institute of Computer Science

October 2008

1 Introduction

Welcome to this Contiki course and the hands-on ses-
sion! The purpose of the course is threefold: to under-
stand Contiki, to see how it can be used to write systems
papers, and to meet others who are using Contiki. These
notes and the slides presented during the course should
be saved for future reference.

Contiki is a state-of-the-art, open source operating
system for sensor networks and other networked em-
bedded devices [3]. Contiki was the first operating
system for sensor networks to provide TCP/IP com-
munication (with the uIP stack) [1, 6], loadable mod-
ules [2], threading on top of its event-driven kernel [3],
protothreads [5], protocol-independent radio network-
ing (with the Rime stack) [7], cross-layer network sim-
ulation (with Cooja) [8], and software-based power pro-
filing [4]. Recent features include a networked shell and
the memory efficient flash-based Coffee file system. In
this course, we use the Rime stack to communicate in a
network of Tmote Sky boards and the network shell to
interact with the network.

These notes describe the practical, hands-on session
with Tmote Sky boards and the Cooja simulator. The
purpose of this session is to get experience with how
to use Contiki with actual hardware and in simulation.
We hope that this experience will be of help when later
working with Contiki.

We use the Instant Contiki development environ-
ment in the exercises. Instant Contiki is a single-file
download that contains the Contiki source code and
all necessary compilers and tools required for devel-
oping software for Contiki. The Instant Contiki envi-
ronment is a Ubuntu Linux installation that runs within
the VMware Player virtual machine execution envi-
ronment. VMware Player is available for free at the
VMware website.

Figure 1: A Tmote Sky board.

In this course, we use Instant Contiki 2.2.1 and an
updated version of Contiki 2.2.1 that has a number of
bugfixes from the current CVS version, as well as a set
of Contiki tutorial programs that we run on the Tmote
Sky boards during the course. The programs illustrate
how to communicate between Contiki nodes and how
to use the Contiki shell.

These notes are structured as follows. Section2 de-
scribe the pre-course requirements and Section3 how to
get started at the course. Section4 contains step-by-step
instructions for the Tmote Sky programming exercises
and Section5 the instructions for the Cooja exercises.
Section6 concludes.

2 System Requirements

For this course, you need a PC that can run Instant Con-
tiki (VMWare) and access to a Tmote Sky board [9]
(Figure1. We have confirmed that Instant Contiki runs
in the VMWare Player, which is available free of charge
from the VMWare website, under Windows and Linux,
and with VMWare Fusion, which costs money, under
Mac OS X. We have brought a few Tmote Sky boards
to the course.

1

2.1 Download, Install Tools

Prior to the course, download and install the fol-
lowing tools (all available from the Contiki website:
http://www.sics.se/contiki/instant-contiki.html):

• VMWare Player

• FTDI Driver

• Instant Contiki

Note that the FTDI driver must be installed before
plugging in any Tmote Sky boards.

2.2 Start Instant Contiki

Open the Instant Contiki folder, and open the file

instant-contiki.vmx

to start VMware and Instant Contiki.

2.3 Log In

When the login screen appears, log in to Instant Contiki:

• Username:user

• Password:user

2.4 Download Exercise Software

Open the Firefox web browser by clicking the Firefox
icon on the taskbar. Enter the following URL in the
location bar:

http://www.sics.se/contiki/ckth08.tar.gz

Open the file with Archive Manager and extract
contiki-kth08 in the directory /home/user/.

3 Getting Started

Before starting with the actual exercises, make sure that
your development setup works by conducting the steps
below.

3.1 Start Instant Contiki

If you have not started Instant Contiki, do so by opening
the file

instant-contiki.vmx

to start VMware and Instant Contiki.

3.2 Log In

When the login screen appears, log in to Instant Contiki:

• Username:user

• Password:user

3.3 Open a Terminal Window

After loggin in, click on the terminal icon to start a ter-
minal window.

3.4 Compile, Run Hello World

In the terminal window, go to the hello world example
directory, compile for the native platform, and run:

cd contiki-kth08
cd examples/hello-world
make TARGET=native

Wait for the compilation to finish. Run the Hello
World program in Contiki:

./hello-world.native

The program should print the words “Hello, world”
on the screen and then appear to hang. In reality, Con-
tiki is still running correctly, but will not produce any
output because the Hello World program has finished.
Press ctrl-C on the keyboard to quit.

3.5 Connect the Tmote Sky

Put a Tmote Sky in the computer’s USB port. The
Tmote Sky will appear in the top of the Instant Con-
tiki (VMware Player) window with the name “Future
Technologies Device”. Click on the name to connect
the Tmote Sky to Instant Contiki.

3.6 Upload Blink

To check that the Tmote Sky is correctly connected to
the computer and Instant Contiki, compile and upload
the blink program to the Tmote Sky:

make TARGET=sky blink.upload

Wait for the compilation and uploading procedure
to finish. During the uploading the Tmote Sky should
quickly flash the red LEDs next to the USB connector.
After uploading finished, the blink program will start to
run and flash the three blue-red-free LEDs.

2

http://www.sics.se/contiki/instant-contiki.html
http://www.sics.se/contiki/ckth08.tar.gz

3.7 Run Hello World on the Tmote Sky

Compile and upload the Hello World program on the
Tmote Sky:

make TARGET=sky hello-world.upload

After the compilation and uploading has finished,
connect to the USB port to view its output:

make TARGET=sky login

Press the reset button on the Tmote Sky and a mes-
sage similar to the following should appear:

Contiki 2.2.1 started. Node id is set to 76.
Rime started with address 76.0
MAC 00:12:75:00:11:6e:cd:fb
Starting ’Hello world process’
Hello, world

The Contiki boot-up code prints the first three lines,
and the Hello World program prints out the last line.
Press ctrl-C to quit.

4 Tmote Sky Exercises

The exercises consist of a set of programs that use the
Rime stack to communicate with other Contiki nodes
over the radio. All programs run on the Tmote Sky
boards. The purpose of the exercises is to play around
with Contiki network programming.

The exercise programs reside in a directory called ex-
amples/tutorials. Go to the directly by typing

cd ..
cd tutorials

4.1 Broadcast

The first exercise is about sending your name to a base
station with broadcast packets. This exercise shows
how to use the broadcast communication primitive in
the Rime stack and how to put data in packets.

The exercise program sends broadcast packets with a
random interval between 20 and 40 seconds. All nearby
Tmote Sky boards will receive the packet.

Open the file tutorial-broadcast.c by typing:

emacs tutorial-broadcast.c &

Go down to the line that contains

rimebuf_copyfrom("Change me", 10);

Change this line so that the string contains your name
or email address. The second argument is the number
of characters in the name string.

Compile and upload the broadcast program to your
Tmote Sky: in the terminal window, type:

make tutorial-broadcast.upload

This will compile and upload the program to the
Tmote Sky connected to your PC. This takes some time
the first time because the entire Contiki operating sys-
tem is compiled.

When the compilation and uploading has finished,
watch your name appear on the projector screen in be-
tween 20 to 40 seconds.

To see what broadcast messages your Tmote Sky see,
type the following in the terminal window:

make login

This shows all serial output that the Tmote Sky is
sending over the USB port. To stop, press ctrl-C.

Go through the code in the tutorial-broadcast.c file to
see how it works. If you have any questions about how
it works, don’t be afraid to ask!

4.2 Unicast

The purpose of the unicast exercise is to see the unicast
communication primitive, see how to get data from the
Tmote Sky on-board sensors, and see how to convert
the sensor data to form a string message.

Open the file tutorial-unicast.c. Locate the lines that
contain the following:

len = snprintf((char *)rimebuf_dataptr(),
RIMEBUF_SIZE,
"Change me: %d.%dC %d%% %d.%dV",

Change the “Change me” to your name or email ad-
dress. Next, make sure that the unicast packets go the
to right address. Locate the following lines:

addr.u8[0] = 76;
addr.u8[1] = 0;

These lines are pre-configured to send data to node
76.0. If we have another node connected to the pro-
jector screen, you will need to change the address here.

Compile and upload the program:

3

make tutorial-unicast.upload

See your name appearing on the projector screen when
the compilation and uploading has finished.

Go through the tutorial-unicast.c file to see how it
works. Feel free to ask questions!

Finally, edit the receiver address so that all packets
go to some one else’s Tmote Sky board, recompile and
upload the program. To see what your Tmote Sky sees,
run:

make login

Type ctrl-C to exit.

4.3 Mesh

The purpose of the mesh exercise is to see the mesh
communication primitive, to see how to transmit binary
data in packets, how to obtain power profiling informa-
tion, how to interact with the on-board button on the
Tmote Sky, and how to use the time-synchronized timer.

The mesh primitive is a multi-hop unicast message
service that automatically discovers a route to the desti-
nation address.

Open the tutorial-mesh.c file and locate the line that
contains:

strncpy(m->name, "Change me", sizeof(m->name));

Change the “Change me” to your name or email ad-
dress. Locate the lines:

addr.u8[0] = 76;
addr.u8[1] = 0;

As with the unicast program, these lines may need to
be changed so that they contain the correct address of
the Tmote Sky connected to the projector screen.

Compile and upload the mesh program to your Tmote
Sky board:

make tutorial-mesh.upload

When compilation and uploading has finished, press
the “User” button on your Tmote Sky. This will send
a packet to the node connected to the projector screen.
The first packet will most likely be lost because it takes
a while to set up the route. Press the button again in a
few seconds. Try it again if the packet does not reach
the receiver.

In the simulation exercises, you will see exactly why
it takes so long to get the first packet through.

Once you have gotten the first packet through, the
following packets usually are quick to be received.

The receiver will print out the received data, as well
as the RSSI and LQI of the received packet. Try to place
your hand over the antenna on your Tmote Sky when
you press the button. Does the RSSI change? Does
the LQI change? Can you manage to get a multihop
route? You may need to reset your Tmote Sky to clear
its routing table.

4.4 Shell

The purpose of the shell exercise is to see how the Con-
tiki shell works. The Contiki shell is a powerful appli-
cation that makes it easy to interact with both individual
nodes and a network of nodes.

Compile and upload the shell program:

make tutorial-shell.upload

When compilation and uploading finished, log into
your Tmote Sky:

make login

The tutorial-shell program installs two new com-
mands in the shell: hello-world and tutorial-broadcast.
Try them:

hello-world

Try to pipe the output of the command to the binprint
command:

hello-world | binprint

Try the broadcast command:

tutorial-broadcast change me

Where “change me” should be your name or email
address.

Try a bunch of other commands:

help
sense | senseconv
power | powerconv
ls
format
echo test | write file
ls
read file

4

nodeid
blink 10
reboot
repeat 2 2 { echo again } &
ps

Exit with ctrl-C.
Open the tutorial-shell.c file. Locate the lines

shell_output_str(&hello_world,
"Hello, world!", "");

Change “Hello, world” to something else, compile,
upload, and login. Try the new hello-world command.

Finally, the most difficult exercise so far: add a
tutorial-unicast command by copying the code from
the tutorial-broadcast command and from the a tutorial-
unicast.c file. Make sure that you correctly open the
unicast connection and that you register the command
with the shell. Compile, debug, compile, debug, ...,
compile, run, test.

5 Cooja Simulation Exercises

This part of the tutorial shows how to simulate Con-
tiki applications in Cooja, the Contiki network simu-
lator. Cooja is Java-based, but simulates deployable
Contiki programs. The simulator has been actively de-
veloped since 2006, and is included in Instant Con-
tiki. In Cooja, nodes can be both simulated and emu-
lated. Simulated nodes are compiled and executed na-
tively, similar to how the native platform works but with
glue drivers towards the simulator. Emulated nodes use
MSPSim, the MSP430 emulator, to directly load and
execute firmware files. Emulated nodes offer high tim-
ing accuracy and source-code debugging, but requires
more memory and processing power. In this tutorial,
we will use both.

5.1 Build and Start Cooja

Go to the Cooja directory, and start Cooja:

cd contiki-kth08
cd tools/cooja
ant run

Cooja builds, and after a few seconds the simulator
starts. Cooja simulations are controlled using plugins:
small Java programs that interact with simulations and
simulated nodes. When Cooja is started, no simulation
is loaded and no plugins are started.

5.2 Create a Simulation

A new simulation is created via the menu.

• Click menu item:File, New Simulation.

A number of configuration options are presented.
During this tutorial, we only use of one of these: “Mote
startup delay”, a random node startup delay with which
we avoid perfectly synchronized nodes.

• Enter aSimulation title , and clickCreate.

We have now created our first simulation in Cooja.
However, the simulation does not contain any nodes yet.
To add nodes we need to first create a node type, and
then add nodes to the simulation.

5.3 Create a Node Type

Any simulated node in Cooja belongs to a node type.
The node type determines, among others, which Contiki
applications to simulate. The node type also determines
whether nodes are simulated or emulated.

• Click menu item:Mote Types, Create mote type,
Contiki Mote Type .

Cooja scans for valid Contiki processes to simulate,
and after a few seconds a dialog with configuration op-
tions appears.

• Enter a Description, and select the process
test etimer process.

The process periodically prints messages using Con-
tiki’s event timers.

• Click Compile to compile the current Contiki con-
figuration.

When the compilation finishes, close the compilation
output window, and:

• Click Create.

We have now created a simulation with a single node
type. Before finally starting to simulate, we need to add
nodes belonging to this node type.

5

5.4 Add Simulated Nodes

A dialog allowing you to add nodes has appeared. This
dialog can later be accessed via:

• Menu item: Motes, Add motes of type,
[your type description].

To add nodes:

• Enter5, and pressCreate and Add.

Five nodes are added to the simulation, randomly lo-
cated in the XY-plane.

5.5 Start Simulating

Two plugins are automatically started: a log listener and
a visualizer. These, and other plugins, can be accessed
via the plugins menu:

• Menu items:Plugins, Log Listener andPlugins,
State Visualizer.

The log listener plugin listens to the serial ports of all
nodes. Visualizers display information about nodes and
their surroundings. For example, the UDGM visualizer
allows you to see ongoing radio transmissions, and to
change radio transmission ranges. In the Control Panel:

• Click Start to start the simulation.

Debug output from nodes appear in the log listener
plugin. Note the unsynchronized event times of the dif-
ferent nodes. This is due to our initial simulation con-
figuration option, “Mote startup delay”, is set to 1 sec-
ond.

5.6 Save, Load and Reload

Cooja allows for saving and loading simulation configu-
rations. When a simulation is saved, any active plugins
are also stored with the configuration. The state of a
current simulation is, however, not saved; all nodes are
reset when the simulation is loaded again. To save your
current simulation:

• Click menu item:File, Save simulation.

Simulations are stored with the file extensions “.csc”.
To later load a simulation:

• Click menu item: File, Open simulation,
Browse.... Select a simulation configuration.

When a simulation is loaded, all simulated Contiki
applications are recompiled.

A functionality similar to saving and loading simula-
tions, isreloading a simulation. When a simulation is
reloaded, the simulation configuration is both extracted
and restored. Reloading is used to reset the simula-
tion; to restart all nodes. More importantly, this can
be used during rapid prototyping: by reloading a simu-
lation with evolving Contiki code, Cooja both compiles
and simulates the code. To reload your current simula-
tion:

• Click menu item:File, Reload simulation

5.7 Tutorial Programs

To simulate the tutorial programs, we need to create
node types referencing to the code in:

contiki-kth08/examples/tutorials

A few of these programs use TmoteSky-dependant
code, such as references to the CC2420 radio, and must
hence be emulated using MSPSim. Prepared simulation
configurations exist in the tutorial directory. Use these
to immediately start simulating the tutorial programs.

Optional: Instead of using the menu optionOpen
simulation, you can also load a simulation withOpen
& Reconfigure simulation. This allows you to
overview and change configuration options when load-
ing a simulation.

To load a tutorial simulation:

• Click menu item: File, Open simulation,
Browse...and navigate to:

contiki-kth08/examples/tutorials

The following four simulations are prepared.

5.7.1 BROADCAST.CSC (tutorial-broadcast.c)

Emulates 4 TmoteSky nodes sending periodic broadcast
messages. Note the different boot times (0-20 seconds).
Note also the big number of radio messages transmitted
to deliver a single broadcast message, due to low power
listening in X-MAC.

6

5.7.2 UNICAST.CSC (tutorial-unicast.c)

Emulates 6 TmoteSky nodes sending periodic unicast
messages. You need to change the unicast destination
address in the source code to match a simulated node’s
address, for example:

addr.u8[0] = 1;
addr.u8[1] = 0;

5.7.3 MESH OS.CSC (tutorial-mesh-cooja.c)

Simulates 30 Contiki nodes in a mesh network. The
source code is a modified version of tutorial-mesh.c - all
references to the CC2420 radio are removed. You need
to change the mesh destination address in the source
code to match a simulated node’s address, for example:

addr.u8[0] = 1;
addr.u8[1] = 0;

When all nodes have booted (after 1 second), simu-
late a button press by right-clicking a node in the vi-
sualizer and selectingClick button on [...] . Note that
creating a route may require several button clicks.

5.7.4 SHELL.CSC (tutorial-shell.c)

Emulates 3 Tmote Sky nodes with the Sky shell. Try
writing any of the following commands to a node serial
port:

help
netcmd { blink 5 }
nodes
netcmd { reboot }

6 Conclusions

This course is an introduction to Contiki communica-
tion programming – use it as a starting point for further
exploration. Feel free to copy the tutorial code in your
own projects: it is a very good way to learn. Play around
with Cooja to get a feeling for how it works.

Always feel free to ask us questions! Use the mailing
list for best responses more people will see the ques-
tions and have a chance to answer.

For more information, visit the Contiki web site:
http://www.sics.se/contiki/

References
[1] A. Dunkels. Full TCP/IP for 8-bit architectures. InPro-

ceedings of The First International Conference on Mo-
bile Systems, Applications, and Services (MOBISYS ‘03),
May 2003.

[2] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-
time dynamic linking for reprogramming wireless sensor
networks. InACM Conference on Networked Embedded
Sensor Systems (SenSys 2006), Boulder, USA, November
2006.

[3] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors. InWorkshop on Embedded Networked
Sensors, Tampa, Florida, USA, November 2004.

[4] A. Dunkels, F.Österlind, N. Tsiftes, and Z. He. Software-
based on-line energy estimation for sensor nodes. In
Proceedings of the Fourth Workshop on Embedded Net-
worked Sensors (Emnets IV), Cork, Ireland, June 2007.

[5] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Pro-
tothreads: Simplifying event-driven programming of
memory-constrained embedded systems. InProceedings
of the Fourth ACM Conference on Embedded Networked
Sensor Systems (SenSys 2006), Boulder, Colorado, USA,
November 2006.

[6] A. Dunkels, T. Voigt, and J. Alonso. Making TCP/IP Vi-
able for Wireless Sensor Networks. InProceedings of
the First European Workshop on Wireless Sensor Net-
works (EWSN 2004), work-in-progress session, Berlin,
Germany, January 2004.

[7] A. Dunkels, F.Österlind, and Z. He. An adaptive com-
munication architecture for wireless sensor networks. In
Proceedings of the Fifth ACM Conference on Networked
Embedded Sensor Systems (SenSys 2007), Sydney, Aus-
tralia, November 2007.

[8] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level sensor network simulation with
cooja. In Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp 2006), Tampa, Florida, USA,
November 2006.

[9] J. Polastre, R. Szewczyk, and D. Culler. Telos: En-
abling ultra-low power wireless research. InProc.
IPSN/SPOTS’05, Los Angeles, CA, USA, April 2005.

7

http://www.sics.se/contiki/

	1 Introduction
	2 System Requirements
	2.1 Download, Install Tools
	2.2 Start Instant Contiki
	2.3 Log In
	2.4 Download Exercise Software

	3 Getting Started
	3.1 Start Instant Contiki
	3.2 Log In
	3.3 Open a Terminal Window
	3.4 Compile, Run Hello World
	3.5 Connect the Tmote Sky
	3.6 Upload Blink
	3.7 Run Hello World on the Tmote Sky

	4 Tmote Sky Exercises
	4.1 Broadcast
	4.2 Unicast
	4.3 Mesh
	4.4 Shell

	5 Cooja Simulation Exercises
	5.1 Build and Start Cooja
	5.2 Create a Simulation
	5.3 Create a Node Type
	5.4 Add Simulated Nodes
	5.5 Start Simulating
	5.6 Save, Load and Reload
	5.7 Tutorial Programs
	5.7.1 BROADCAST.CSC (tutorial-broadcast.c)
	5.7.2 UNICAST.CSC (tutorial-unicast.c)
	5.7.3 MESH_OS.CSC (tutorial-mesh-cooja.c)
	5.7.4 SHELL.CSC (tutorial-shell.c)

	6 Conclusions

