

Save Gas Map – An application for Google
G1 dev phone on Android platform

CSC714 - Project Report 3

Team Members:
Raghuveer Raghavendra (rraghav2)

Prasanna Jeevan Devanur Nagabhushan (pdevanu)

1. Abstract

We have implemented “Save Gas Map” application for Google G1 dev phone on Android

platform [1,2,5]. The application allows the user to enter multiple locations that the user is

interested to visit and finds the optimal route between those locations and lists them on the

Google Maps.

We all use Google maps to get from point A to point B. Given the address of the start location

(A) and the end location (B), Google maps plots out a nice route for the trip and gives an

estimate of the travel time. But if the trip includes multiple points, the user has to specify the

sequence of locations himself before Google maps can give a route. It would be interesting if

Google maps can give the shortest path for a set of locations.

2. Development Framework

Android is a software stack that allows developers build applications for mobile devices in

the Java Programming Language. It stack includes an operating system, a middleware and a few

applications. Google provides an android SDK for developing android applications. The SDK is

available on all major platforms – Windows Linux and Mac OSX and is free download from [6].

We developed our application on the Android 1.1 SDK release 1. The development was done

the Eclipse IDE for Java using the Android Development Tool (ADT) plug-in. Instructions for

installing the SDK and ADT can be found here [7].

3. Getting Started on Android

There is a lot of help available online for developing Android applications, both from Google

and third party developers. Links [6, 7, 8] help in basic setup and writing the first “Hello

Android” program.

The Android platform requires all applications installed to be signed digitally with a

certificate. The certificate is used to identify the authors of applications and to build trust among

applications. More information on application signing can be found here [9].

Android provides a Maps API to help developers use and integrate Google Maps with their

mobile applications. However, in order to use the Maps API the developers have to register with

Google Maps service and agree to certain Terms of Service. More information on registering

with the Google Maps Service can be found here [10].

4. Implementation

a. GUI

We are able to create a GUI to accept inputs for multiple locations. The input location

should be valid addresses. More locations can be added dynamically as and when required by

the user. The ‘Add Location’ button allows adding new text boxes where the user can enter

the location address. The ‘Show Map’ button displays the locations on the Google map.

Each of these addresses is converted into a pair of latitude and longitude. This is done by

using the API’s getLatitude() and getLongitude() of the Android’s Location class.

Then the locations are arranged to get the optimal shortest path and the locations are

displayed in order on a map. However, there is no API support to draw out a route on the

Google Map in Android. Hence we just call upon the maps application on G1 to display the

route. The G1’s map application cannot display a route between more than two locations, an

inherent drawback of using maps on G1. So in summary, the path between the first two

locations is displayed using the G1’s map application.

b. Algorithm Details

Our problem of finding the route between N locations and back to the initial location is

the classical traveling salesman problem (TSP) which is NP Complete and NP Hard. Starting

from a location, for covering N locations and arriving back at a starting location, there are N!

possible routes. Also, in order to decide the shortest route, there needs to be square(N) calls

to the Google Maps. Each call to the Google Maps system querying the distance between two

locations is deemed expensive. We want to minimize this. Hence we make an assumption

that for two locations that are geographically closer (in terms of their latitudes and

longitudes), there exists roads connecting the locations that are proportionally closer. With

this assumption, we just have to make N Google maps API calls just to query the positions of

the locations (latitude, longitude).

With the obtained latitude and longitude the distance between any two different locations can

be calculated using the distance formula.

𝑑𝑑 = �(𝑦𝑦2 − 𝑦𝑦1)2 − (𝑥𝑥2 − 𝑥𝑥1)2

Where x1, x2 represents the latitudes of two different points and y2,y1 represents their

longitudes.

We have used a heuristic algorithm[3] to solve the TSP. The algorithm is called as Nearest

Neighbor (NN) which is a greedy algorithm. It works by selecting the nearest unvisited

location. The distance between all the locations and the initial location are calculated and the

one nearest to the initial location is selected. Then the distance from the second location is

calculated to all other remaining locations and the nearest location is selected and so on. NN

gives path lengths of an average of 1.25*exact shortest length. There could be certain

arrangement of locations which gives a longer path. We also considered other heuristic

algorithms but the development complexity of NN is much less compared to others and with

a reasonable performance. So we have chosen NN.

c. Major Classes

Some of the important classes that are accessed are as follows:

android.view: This class exposes the UI classes which are required to handle the screen

layout of the map and the interaction that the user does with it.

com.google.android.maps: Our application displays and controls the Google map using this

package. We have used MapView class - to display the map on the screen, MapController

utility class - to handle the zooming and panning of the maps and GeoPoint which represents

the longitude and latitude of the user.

android.location: This is used to access the location services which are used to identify the

current location of the user. We have used the Location class which represents the location of

the user sensed at a particular time. We use the getLatitude() and getLongitude() API’s to

obtain the latitude and longitude of the users current location. The access to system location

services is obtained through LocationManager class.

LocationOverlay: This class is used to mark the pointers on the Google map to identify the

locations based upon the path we should take to reach them.

5. Testing

Firstly the GUI was tested to see if the text boxes are created dynamically and the inputs

provided are read properly. Then we tested the alignment and functionality of all other GUI

components such as buttons.

The algorithm was tested by providing a set of locations and checking whether a optimal route is

displayed between them. We also verified that the application does not crash or became

unreliable over multiple usages.

6. Results

 Locations to be visited by user Locations ordered by GAS MAP
1 2313 Champion Ct, Raleigh, NC 27606 (Our

house)
2313 Champion Ct, Raleigh, NC 27606

2 3201 Edwards Mill Rd # 123, Raleigh, NC 27612
(Harris Teeter)

3415 Avent Ferry Rd, Raleigh, NC 27606
(Food Lion Inc: Store Number 1454)

3 3415 Avent Ferry Rd, Raleigh, NC 27606 (Food
Lion Inc: Store Number 1454)

6715 Hillsborough St, Raleigh, NC 27606
(Around the World Market)

4 6715 Hillsborough St, Raleigh, NC 27606 (Around
the World Market)

3201 Edwards Mill Rd # 123, Raleigh, NC
27612 (Harris Teeter)

Total round trip distance
(in miles)

19.9 Total round trip
distance (in miles)

14.8

Saved distance (in miles) 5.1

Some of the possible locations visited by the students are selected in some order and the

distance is calculated using the Google maps. Then these are ordered using our application and

visited in the specified order. The round trip distance reduced by 5.1 miles. This clearly shows

that the Save Gas Map application finds the shorter route between different locations and is

useful.

7. Limitations and Future Improvements

The Google Android platform does not support APIs to obtain the path and display it

between different locations. The earlier versions of Android m3/m5 supported them but they

were removed in the latest versions. Hence we were not able to display the paths between all the

locations. This can be overcome in future if there will be APIs in future versions of Android.

Currently, we make use of the functionality of the maps application on G1 to display the path

between the first two locations.

Due to the NP-Complete nature of our problem we are not able to obtain the most optimal route

between different locations. The NN algorithm can be replaced by other heuristic algorithms

which can provide shorter route in these cases.

The addresses cannot be invalid since the nearest address which suits will be selected without

prompting to the user. This can be changed to allow the user to select from a list of addresses.

The auto fill feature can be added for the address boxes so that user does not have to type the

whole address.

8. Schedule

Activity Date Team
member

Status

Project Proposal 03-16-2009 Both Done
Website 03-16-2009 Jeevan Done
Initial Setup (Linux) 03-24-2009 Raghu Done
Initial Setup (Windows) 03-25-2009 Jeevan Done
Literature survey of Android API’s 04-12-2009 Both Done
Basic Implementation (View/Maps/Location) 04-01-2009 Both Done
Implementation of required GUI 04-05-2009 Raghu Done
Implementation of the algorithm 04-05-2009 Jeevan Done
Integration of GUI and algorithm 04-06-2009 Raghu Done
Setup on the G1 Phone 04-08-2009 Jeevan Done
Unit Testing & Bug fixing 04-12-2009 Both Done
System Testing & Bug fixing 04-20-2009 Both Done

9. Snapshots

1. Screen to enter addresses 2. Map showing locations in order

3. Screens displaying the routes

10. Project web page

http://www4.ncsu.edu/~pdevanu/Site/Project.htm

http://www4.ncsu.edu/~pdevanu/Site/Project.htm�

11. References

1. http://source.android.com/

2. http://developer.android.com/

3. http://en.wikipedia.org/wiki/Traveling_salesman_problem#Heuristic_and_approximation

_algorithms

4. http://iphoneapplicationlist.com/

5. http://androidcommunity.com/

6. http://developer.android.com/sdk/1.1_r1/index.html

7. http://developer.android.com/sdk/1.1_r1/installing.html

8. http://developer.android.com/guide/tutorials/hello-world.html

9. http://developer.android.com/guide/publishing/app-signing.html

10. http://developer.android.com/guide/topics/location/geo/mapkey.html

http://source.android.com/�
http://developer.android.com/�
http://en.wikipedia.org/wiki/Traveling_salesman_problem#Heuristic_and_approximation_algorithms�
http://en.wikipedia.org/wiki/Traveling_salesman_problem#Heuristic_and_approximation_algorithms�
http://iphoneapplicationlist.com/�
http://androidcommunity.com/�
http://developer.android.com/sdk/1.1_r1/index.html�
http://developer.android.com/sdk/1.1_r1/installing.html�
http://developer.android.com/guide/tutorials/hello-world.html�
http://developer.android.com/guide/publishing/app-signing.html�
http://developer.android.com/guide/topics/location/geo/mapkey.html�

