
CSC714 – Progress Report

Fall 2011

An Application Profiler for Android

http://www4.ncsu.edu/~arezaei2/CSC714/

Arash Rezaei

arezaei2@ncsu.edu

Gopikannan Venugopalsamy

gvenugo@ncsu.edu

Problem Statement

With the advent of smart phones, mobile computing has been revolutionized and many new

opportunities have been introduced into the world of research. A challenge with today's smart

phones is their security issue with regards to third party applications. The way a given malicious

application uses the phone resources like CPU, battery, network and private data is different

from the others. The Android market is getting to a considerably large share and screening that

for malicious applications becoming so hard, if not impossible. In this project, our aim is to

provide an application profiler for Android platform. This can be achieved by implementing a

profiling daemon which gathers the formation related to the usage of system resources like

computing, memory, file manipulation, network and other sensing resources/information related

to each application.

Design

1. Monitoring Service: A Service is an application component either performing a longer-

running operation while not interacting with the user or to supply functionality for other

applications to use. Services can be started with Context.startService() and

Context.bindService(). So services are run in the background. Our monitoring service is a

periodic process that wakes up every T seconds and gathers information about all

applications currently running in the Android device and dumps the data into a log file as

following.

{Time_stamp}, {App1}

CPU:{value},Memory:{value},Sensores:{value},openfiles:{value},updatedfiles:{value},

deletedfile:{value}, newfiles:{value}

{Time_stamp}, {App2},

CPU:{value},Memory:{value},Sensores:{value},openfiles:{value},updatedfiles:{value},

deletedfile:{value},newfiles:{value}

..

2. Memory Usage: Memory in Android is shared across multiple processes.

ActivityManager class has a method getMemoryinfo() which returns overall memory

usage of the device. This is usually helpful to find out when there is no more memory to

create new background processes. The getProcessMemoryinfo() method can be used to

obtain the memory usage of a process running in device.This returns a memory info

object that has various components Pss, PrivateDirty and sharedDirty. The Pss metric

will help us to get an idea about the relative RAM usage of processes. PrivateDirty is the

number of Dirty pages belonging to the process which cannot be flushed to disk. All

these components can be collectively used to profile the memory usage of different

applications.

3. Sensor Usage: Sensor manager is the service that handles all kinds of sensors in device.

Batterystats.Uid.sensor is a package that can be used to obtain statistics of sensor usage

of a process. It can be used to obtain the type of sensor used by application and the

duration of usage. The com.android.internal.os.PowerProfile package can be used to

obtain the power consumed when that particular sensor is on. The energy consumed by

application's sensor usage can be found by multiplying the returned power consumption

factor with duration of usage.

4. CPU Usage: The Activity Manager can be used to obtain the Uid of the running

processes. For each running process CPU usage can be found using the package

"android.os.BatteryStats.proc" can be used along the Uid of the process to get the user

time,system time and foreground time of the application. The sum of these can be

multiplied along the power factor obtained from "com.android.internal.os.PowerProfile"

package which gives us the CPU usage of that application

5. File manipulation: Monitoring files (creation/ deletion/ change) can be done using the

FileObserver, which fires an event after files are accessed or changed by any process.

Each FileObserver instance monitors a single file or directory. If a directory is

monitored, events will be triggered for all files and subdirectories (recursively) inside the

monitored directory. An event mask can be used to specify which changes or actions to

report.

Milestone:

Task Status
Install Eclipse + SDK (both - due OCT 27) completed

Background reading - profiler applications (both - due OCT 30) completed

Find the classes to get the monitoring data

Daemon, monitoring: Network, files (creation/deletion/change) (Arash)

Monitoring: CPU, Battery, Memory, Sensors (Gopi)

completed

Design the profiler(due (OV 10) completed

Profiler Implementation (due (OV 23)
Analysis of gathered data (due (OV 25)
Final project report (due (OV 29)

Update: During this project, we found out that Network usage and Battery usage are way more

complex than the given time we had, so we don’t have a solution for them so far. Instead we

looked into memory usage. Another thing that we could not find a way to get information is

performance counters, mainly because of the limitations exposed by Android.

References:

• [Service] http://developer.android.com/reference/android/app/Service.html

• [Memory Usage]

• http://stackoverflow.com/questions/2298208/how-to-discover-memory-usage-of-my-application-in-android

• [Memory Usage]

http://developer.android.com/reference/android/os/Debug.html#getMemoryInfo(android.os.Debug.Memory

Info

• [Sensor Usage] http://hi-android.info/src/com/android/internal/os/PowerProfile.java.html

• [Sensor Usage] http://www.androidjavadoc.com/1.1_r1_src/android/os/BatteryStats.Uid.Sensor.html

• [CPU usage] http://hi-android.info/src/com/android/internal/os/PowerProfile.java.html

• [File Manipulation] http://developer.android.com/reference/android/os/FileObserver.html

