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Project Overview:
We will construct an object transportation system using the LEGO Mindstorms RCX. The 
objects (likely small balls, e.g. ping-pong balls) will be input to the system by hand, being placed 
into various input bins. These objects must be delivered to a common output bin. Objects are 
divided into “classes” based on their input bin, which we will represent using different colors (i.e. 
red balls in one bin, blue in another, etc.)
 
The input bins and output bin will be oriented in a ring structure, in some order known a priori. 
The system will feature an RCX-powered vehicle capable of moving in either direction around 
this ring, picking up objects at input bins and storing them for transport, and dropping off all 
stored objects at the output bin. We will use brickOS [1,2,3,5] as our software platform.

Real-time Goals:
Consider the i’th object arriving in the system. Let a[i] be its arrival time, p[i] be its pickup time, 
and d[i] be its delivery time (all absolute). Also, let c[i] be the class/color of the object. Given 
this, there are two basic real-time goals we could impose (Problem 1 and Problem 2):

1. Guarantee that each object is picked up by a class/color-specific deadline relative to 
its arrival time, and also guarantee that each object will be delivered to the output by 
another class/color-specific deadline relative to its pickup time. That is:

for all objects i: p[i] - a[i] <= D1[c[i]], and d[i] - p[i] <= D2[c[i]]
2. Guarantee that each object is delivered by a class/color-specific deadline relative to its 

arrival time. That is:
for all objects i: p[i] - d[i] <= D[c[i]]

 
We will explore one or the other of these guarantees (or both, if time permits). Deciding which 
to pursue is also part of the project, as this will require further evaluation of their difficulty/
complexities (see below). Problem 2 seems harder, but more examination is needed.

 
 

 
 



Real-Time Challenges:
A simple strategy of checking the input bins in (counter)clockwise order, then delivering to 
the output bin, gives us one possible worst-case bound, but this may not be able to schedule 
all systems. For instance, “checking input bins” might take significant time depending on the 
robot, short-deadline objects may miss deadlines due to unnecessarily checking other bins 
on the way, and it might be unnecessary to check some bins on every circuit due to very long 
deadlines.
 
Thus, we would like to do better than this by using some scheduling algorithm(s). We would 
like to formulate the system in terms of tasks, which would allow us to apply various real-time 
techniques/algorithms to meet these guarantees. Two issues make this difficult:

1. Not only do objects arrive at arbitrary times (like sporadic tasks), but the arrival times 
themselves are unknown at runtime (unlike sporadic tasks): the RCX can only check 
input bins when physically present, and objects may have waited  for a while already.

2. The time required to move to an input/output bin is variable, depending on the RCX’s 
current location. An overall worst-case bound on this time would be very loose.

3. Modeling pickup and delivery as simple tasks can be very inefficient, as visiting bins in 
arbitrary order could lead to “excessive seeking”.

 
One solution to the first issue we will explore is using fixed periodic bin checking (though this 
has efficiency issues due to problem 3). We might deal with problem 2 via some form of LLF 
scheduling: since LLF updates mid-job, we can also update execution time mid-job. We must 
ensure that such an algorithm makes progress, however, or else “thrashing” may occur.
 
Another issue to consider is what action to take if/when objects cannot be picked up/delivered 
on time (i.e. missed deadlines). The system might be well modeled with some variant of 
sporadic tasks, in which case we can apply acceptance tests to incoming delivery tasks and can 
choose whether or not to accept them based on feasibility. In any case, the reaction to a missed 
deadline/rejected sporadic task will probably be the same: skip the infeasible job, and raise 
some error signal, such as a distinctive tone sequence or flashing light.
 

Physical Construction Challenges:
We have access to a train LEGO set [4], which would allow mounting the RCX on a track. This 
would greatly simplify ring movement. We plan to use touch sensors to detect arrival at bins, 
touch/light sensors to detect whether objects are present in the bins, motors to empty/fill input/
output bins, and a powered engine block to move the RCX (part of the train kit).
 
It’s possible we could run out of sensor ports, actuator ports, or CPU cycles on one RCX, in 
which case we will procure a second RCX, and add basic coordination over IR to the project if 
need be. We would like to avoid this, as it adds extra complexity and difficulty in synchronization 
between actions, but we will consider it as a fallback position.
 
 
 
 



Milestones:
1. Background research tasks:

a. Learn brickOS, run example programs for practice
b. Look at brickOS kernel and determine where we will need to make modifications

2. Algorithm design tasks:
a. Come up with some strategies for meeting deadlines more efficiently than an 

extreme-worst-case bound approach (factoring in current position, etc.)
3. Physical construction:

a. Setup the tracks and the layout
b. Build input/output bins
c. Construct the basic delivery vehicle (with pickup/dropoff mechanisms)
d. Add bin station sensor to vehicle (for sensing when we arrive)
e. Add object pickup sensor (for sensing if objects are present in a bin)

4. Programming tasks:
a. Code the motion routines (vehicle movement, detecting current position)
b. Code the loading/unloading routines for moving objects
c. Code the real-time scheduler to control the above two modules

■ Note: this won’t be a real-time scheduler in the traditional sense, as we 
are primarily concerned with physical action time, rather than CPU time

5. Testing tasks:
a. Come up with (physical) test cases, both feasible and infeasible
b. Run the tests (will record video and analyze later, as testing is time-sensitive)

 
All milestones within a major category (1-5) should done serially, with major categories being 
parallel to each other. Exceptions: 3d/e can be reordered, 4* can be done in parallel, 2a must be 
done before 4c.
 
Assignments:

● David: 3d,e, 4c, 5a
● Vishnu: 3a,b, 4a,b
● Both: 1a,b, 2a, 3c, 5b
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