
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENHANCING REAL TIME CAPABILITIES OF NANO-RK FOR 

TELOSB PLATFORM 

 

CSC714-FALL 2011 FINAL REPORT 
 

 

NORTH CAROLINA STATE UNIVERSITY 

INSTRUCTOR: DR. FRANK MUELLER 

 

 

 

TEAM MEMBERS 
Devendra K Modium 

Krishna Priya Kolla 
 

 

 

 

 

 

 

 

 

 
 
 

 



1. INTRODUCTION 

 

A wireless sensor network consists of spatial distributed autonomous sensors to monitor 
physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or 
pollutants and to cooperatively pass their data through the network to a main location. The 
development of wireless sensor networks was motivated by military applications such as 
battlefield surveillance. These networks are used in many industrial and consumer applications, 
such as industrial process monitoring and control, machine health monitoring, and so on. 

Nano-RK is a fully preemptive reservation-based real-time operating system (RTOS) that 
can be used in wireless sensor networks. It includes a light-weight embedded resource kernel 
(RK) with rich functionality and timing support using less than 2KB of RAM and 18KB of 
ROM. Nano-RK supports fixed-priority preemptive multitasking for ensuring that task deadlines 
are met, along with support for CPU, network, as well as, sensor and actuator reservations. 

 Nano-RK currently supports full functionality for the Firefly sensor networking platform as 
well as the MicaZ motes. Our aim is to enhance the capabilities of Nano-RK for the Telos Rev. B 
platform (TI MSP430F1611). Motes that are generally used in wireless networks require radio stack 
to communicate with other motes in the network. Sensors are required to collect data from the 
environment they are posted in. These two components are critical for the usability of a mote in a 
sensor network. This project aims at implementing the radio stack and light and temperature sensor 
modules for Nano-RK on the TI MSP430F1611 platform  
 Telos Rev.B platform has the following components, Chipcon CC2420 (radio transceiver), 
photo synthetically active radiation sensor (light sensor), temperature sensor along with other 
sensors. Currently Nano-RK doesn’t support the above mentioned components for Telos Rev.B 
platform. The main contributions of this project are, 

1. We have implemented modules to provide support for the radio transceiver using Chipcon 
CC2420 

2.  We have provided support for light sensor (Hamamatsu S1087-01) for TI MSP430F1611 
platform. 

3. We have provided support for Temperature sensor (Sensirion SHT11) for TI MSP430F1611 
platform. 

4. We have implemented sleep mode using low power mode 3 (LPM3) on TI MSP430F1611 
platform. 

5. We have also provided support for the User Button on the above platform. 
 
2. IMPLEMENTATION AND TESTING 
 
2.1 Radio Stack Implementation 
 

The goal of this module to is to extend the Nano-RK to have a working radio stack so that 
motes can communicate using RF in Nano-RK. The base Nano-RK code, upon which we started 
working on, has the higher level APIs to send and receive packets. After analyzing the code, we have 



found the base Nano-RK doesn’t have the essential functionality of selecting and initializing USART 
module for SPI interface to CC2420, configuring CC2420 and hardware abstraction library (HAL) 
functions of communicating CC2420 over SPI bus. Necessary functionality is added to the Nano-RK 
code to make radio stack work. 

Configuration of the CC2420 is performed using general I/O pins and the MSP430’s SPI 
interface. Basic initialization of the CC2420 is done by asserting the RESET pin active low for at 
least 1 μs. The VREG_EN signal must also be set for the transceiver to operate. After these two 
conditions are met, the MCU can start operating the RF transceiver over the SPI bus. Before any 
further action can take place, the CC2420 oscillator must be allowed time to stabilize. Bit 6 of the 
status byte holds the state of the oscillator.  

MSP430F1611 has two identical USART modules USART0 and USART1. In our 
implementation, USART1 module is used in UART mode for asynchronous serial communication 
with terminal and USART0 module is used in SPI mode for synchronous communication with 
hardware module CC2420. 

MantisOS along with MSP430F1611 hardware data sheets are taken as reference for 
extending Nano-RK to include radio stack functionality wherever needed. To integrate the RF 
communication with Nano-RK periodic task model, polling is used in the RF receiver. In each cycle, 
RF receiver checks for the packet arrival and reads the packet from CC2420 hardware RX buffers if 
one exists.  
 

2.2 Radio Stack Testing 
 

Basic testing of Radio module is done to make sure correct functionality is added to Nano-
RK. In this test, both transmitter and receiver contain a periodic task with configurable timing 
parameters (period, phase, execution time). In each cycle the transmitter sends a packet with value 1 
or 0 alternatively in the payload. The transmitter sets the Red LED when it sends one and clears it 
when it sends a 0. The receiver task runs at a higher frequency as compared to the Transmitter. In 
each cycle the receiver checks if a packet arrived over radio, if value 1 is received it sets the Red 
LED and clears it if it receives a 0. The receiver task does nothing if no packet is received. Since 
polling method is used, the frequency of receiver task is made higher than the transmitter task. 
Results show that the two motes are able to successfully communicate over radio and good 
synchronization is achieved over radio by configuring the timing parameters of transmitter and 
receiver tasks appropriately.  

Apart from this test, separate tests were done where large messages (size 40 bytes) are sent 
from one mote to other over radio. The CRC check passed for these messages. We also tested them 
using UART. Byte by byte of payload from transmitter is checked with receiver to make sure that no 
bytes got corrupted. 
 

2.3 Temperature Sensor Implementation 
 

 The aim of this module is to implement a driver for the temperature sensor SHT11 in Nano-
RK, so that applications can access readings from the temperature sensors. Telos Rev.B platform has 



Sensirion SHT11 temperature/humidity sensor. The SHT11/SHT15 sensors are calibrated and 
produce a digital output. The calibration coefficients are stored in the sensor’s onboard EEPROM. 
The sensor is coupled with a 14-bit A/D converter. 
 Implementation of the Temperature driver involves code for sensor initialization and also api 
to read from the sensor. Initialization of senor involves setting direction of the POWER, SCLK and 
DATA pins of the SHT11 sensor followed by setting SCLK pin low and DATA pin high. However 
the sensor isn’t powered yet. Reading the temperature from the sensor involves predefined steps. It 
starts with a transmission start sequence which involves falling edge on DATA pin, low pulse on 
SCLK pin followed by rising edge on DATA.  The sensor can be used to get Temperature as well as 
Humidity sensor readings. To obtain the temperature readings, after the transmission sequence 
appropriate command needs to be sent to sensor using DATA and SCLK pins. Once ACK is obtained 
from the SHT11, waiting for measurement to complete is necessary before the temperature readings 
can be read from the sensor and supplied to application.  
 Nano-RK has generic API for accessing any driver. All the above explained implementation 
of the temperature sensor is written complying with the Nano-RK generic driver API.        
       The raw sensor reading obtained from the sensor can be converted into Celsius using the 
following formula, 
 
 Temperature in celsius =  -39.60 + 0.01*(raw_ temp_sensor _reading) 
 
2.4 Temperature Sensor Testing 
 
       Testing of the Temperature sensor is done by comparing the obtained temperature readings 
with those obtained from the sensor driver already implemented for TinyOS. To avoid any sensor 
hardware offsets, same Tmote is used while obtaining readings from Nano-RK and TinyOS. 
Temperature readings are recorded in different locations with different temperatures. The 
temperature readings of the SHT11 sensor are noted using the implemented sensor driver and UART 
implemented for Nano-RK and also readings of the SHT11 sensor of the same mote are obtained 
using TinyOS in same environmental conditions. The results obtained are shown in table 1. It can be 
seen that temperatures obtained in Nano-RK using the implemented SHT11 sensor driver are 
identical to the temperatures obtained in TinyOS. 
 
   

 
 Location  

 
Nano-RK 

 
TinyOS 

   1   19 19 
   2   23 23 
   3   25 26 

Table 1. Measured Temperature in Celsius for NanoRK and TinyOS 
 
 
 
 



2.5 Light Sensor Implementation 
 
 The Telos Rev.B motes are equipped with a Hamamatsu S1087 photo-diode for sensing 
photo synthetically active radiation and Hamamatsu S1087-01 photo-diode for sensing the entire 
visible spectrum including infrared radiation. Both of them give their measurements in lx. These 
analogue sensors are connected to the mote's micro-controller ADC pins, S1087 to ADC4 and 
S1087-01 to ADC5. We have implemented a software driver so that applications can access the 
readings from the Hamamatsu S1087-01 component. The implementation is done complying with the 
generic NanoRK API. 
 Based on the graphs available in the Hamamatsu S1087-01 datasheet, the current of the 
sensor, I, may be converted to Lux using the formula   
    lx = 0.769 * 106 * I * 1000 -------------------- (1) 
 In order to obtain the value of I we need to follow these steps,  
 Light sensor values are read using the micro controller's 12-bit ADC. To convert the raw 
value obtained from the ADC to the corresponding voltage, we perform the calculation:  
    V(Sensor) =  (value/4096) * Vref --------------(2) 
 The photo-diodes create a current through a 100kOhm resistor. After calculating the voltage 
using equation (2) above, we convert the voltage into a current using V=IR 

 I = V(Sensor) / 100000  
Finally we can obtain the light sensor reading in lx using the (1). 

2.6 Light Sensor Testing 
 
 Testing is done using two applications specified in Homework 1. The first application  
obtains the light sensor reading periodically and sets an LED if the reading is greater than a threshold 
value. The LED is cleared if the value is less than the threshold. It was observed that the LED goes 
off whenever the light sensor is covered with a finger and stays on otherwise. 
 The second application involves one mote which toggles an Led with every period. The other 
mote obtains the light sensor readings at a higher frequency and sets an LED if the reading is greater 
than a threshold otherwise the LED is cleared. For this application we first have to obtain the light 
sensor reading for ambient light and set the threshold accordingly. In order to do this, for the first few  
cycles the ambient light reading is obtained with all LEDs off and a threshold is calculated based on 
the average of the ambient light readings. The actual sensing application begins only after the first 10 
cycles. It was observed that both the motes toggle their LEDs in a synchronized manner provided 
they are placed close enough to each other.       

2.7 Power Saving Mode Implementation 
 
        Power is very expensive and critical resource for operation of Motes in wireless networks. 
Implementing low power mode as and when needed is essential to conserve battery power. MSP430 
platform is designed for ultralow-power applications and uses different operating modes. This 



platform has five different power saving modes. The low-power modes 0–4 are configured with the 
CPUOFF, OSCOFF, SCG0,and SCG1 bits in the status register The advantage of including the 
CPUOFF, OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the present 
operating mode is saved onto the stack during an interrupt service routine. Program flow returns to 
the previous operating mode if the saved SR value is not altered during the interrupt service routine. 
Program flow can be returned to a different operating mode by manipulating the saved SR value on 
the stack inside the interrupt service routine. The mode-control bits and the stack can be accessed 
with any instruction. When setting any of the mode-control bits, the selected operating mode takes 
effect immediately. Wake up is possible through all enabled interrupts.  
    The most important factor for reducing power consumption is using the MSP430’s clock 
system to maximize the time in LPM3. LPM3 power consumption is less than 2 μA typically, with a 
real-time clock function and all interrupts active. A 32-kHz watch crystal is used for the ACLK and 
the CPU has a 6-μs wake-up. 
           Currently Nano-RK has high level framework, to decide when to enter and exit sleep mode. 
But it doesn’t have the essential functionality on how to enter and exit the low power mode. In the 
current Nano-RK, when the idle task is scheduled, it checks if the next wakeup period is greater than 
NRK_SLEEP_WAKEUP_TIME it calls nrk_sleep which is supposed to enter low power mode. We 
have implemented the nrk_sleep to enter the low power mode using Timer, which is sourced from the 
ACLK. In the nrk_sleep, TimerB is started and then CPU enters LPM3 mode where CPU, SMCLK, 
MCLK and DCO are off whereas ACLK is on. Once TimerB expires, the interrupt service routine of 
TimerB is called, where the CPU exits from the low powering mode. 
    
2.8 Power Saving Mode Testing 
 
   Testing the functionality of the power saving mode is done using LEDs, by tracking the 
entering/exiting of low power mode. The system is stable with the functionality of low power mode 
and is running as expected with the basic tasks. Testing is done with different number of tasks in 
system with different timing configurations and it is observed that system is stable. 
 
2.9 User Button Implementation 
 
 The Telos Rev. B motes have both a reset button and a user button. Currently NanoRK does 
not support the user button for this platform. We implemented functions to provide applications 
access to the button state. This involves enabling the user button and implementing the interrupt 
service routine. Applications can access the button state using a global variable BUTTON_STATUS. 
Initially this variable is set to B_ON. Whenever the user button is pressed an interrupt is generated. 
The interrupt service routine toggles the BUTTON_STATUS between B_ON and B_OFF.  
 
2.10 User Button Testing 
 
 The User button implementation is tested using a simple application which toggles an LED 
every period second only when the BUTTON_STATUS is on. It is observed that initially since the 



BUTTON_ STATUS is B_ON the Led toggles every second. When the user button is pressed the 
LED stops toggling. The LED toggling can be turned back on by pressing the user button again. The 
User button is also used for the test cases for the Radio and Light sensor, in order to make them 
similar to the tests mentioned in Homework 1.    
 
3. CONCLUSION: 

 
 Necessary functionality to enable and use the radio transceiver (Chipcon cc2420), light 
sensor (Hamamatsu s1087-01) and temperature sensor (Sensirion SHT11) in NanoRK for the TI 
MSP430F1611 platform are implemented and tested for correctness. Power saving mode is 
implemented using low power mode 3 and tested. Also necessary functions to enable and use the user 
button are implemented. These added functionalities make NanoRK more usable in Wireless sensor 
networks for TI MSP430F1611platform. 
  
4. FUTURE WORK: 

 
1. Currently we are using only Low power mode 3 to implement nrk_sleep. This 

implementation can be improved by using different low power modes depending on the value 
of sleep time. 

2. We have implemented the basic low level functionality to use the radio transceiver on Telos 
Rev.B platform. Higher level protocols like TDMA suitable for various applications can be 
implemented on top of this and tested.    
 

TIMELINE 
 
October 24 - November 1 (Devendra and Krishna): 
 Study required data sheets and refer to implementation of Radio stack for TI MSP430x5438 
November1 - November 8 (Devendra and Krishna): 
 Completion of radio stack module in Nano-RK 
November 8 - November 20 (Devendra): 
 Completion of Light & Temperature sensor modules in Nano-RK 
November 8 – November 20(Krishna): 
 Completion of power save mode and user button module in Nano-RK 
November 20 – December 2(Devendra): 
 Testing the code for radio communications, light sensor and temperature sensor functionality 
with the same text cases as in HW1 
November 20 – December 2(Krishna): 
 Testing the code for radio communications and power save mode and User Button. 
December 2 – December 6 (Krishna and Devendra):   
 Writing final report, thorough testing with integrated code and writing test cases for 
submission 
 



WEBSITE 
http://www4.ncsu.edu/~kkolla/CSC714/proj.html 
 
PROJECT FOLDERS IN SUBMITTED CODE FOR DIFFERENT TEST CASES 
 
The submitted file nano_RK_proj.tar.gz has the following folders for different test cases,  
Radio Stack: basic_rf 
Light Sensor: basic_light, blink_light 
Temperature Sensor: basic_temp 
User Button: button_test 
Power Saving mode: sleep_test 
 Each of these folders has a Readme file that provides necessary details to run the tests. 
 We have also submitted the file nano_RK_proj_sleep.tar.gz, this file can be used to track the 
entering and exiting of low power modes using LEDs. Use project sleep_test for this test case.   
 
REFERENCES 
 Nano-RK: an Energy-aware Resource-centric RTOS for Sensor Networks, 26th IEEE 

International Real Time Systems Symposium RTSS05 (2005) by Anand Eswaran, Anthony 
Rowe, Raj Rajkumar. 

 MSP430x1xx Family Data Sheet 

  MSP4301611 Part Specific Data Sheet 

  Nano-RK website www.nanork.org 

 Mantis OS website www.mantisos.org 

  Wireless Sensor Networks http://en.wikipedia.org/wiki/Wireless_sensor_network 

 CSC 714 Lecture Slides 
 


