
Fully Preemptive nxtOSEK Kernel with Preemption Threshold Scheduling

Jimit Doshi (jdoshi@ncsu.edu) and Saransh Gupta (sgupta20@ncsu.edu)

We present below the tasks done so far for this project. Essentially, we have mapped out the entire flow

chart for normal scheduler operation as documented below:

Normal Scheduler Operation

We begin with the timer ISR handler in the irq.s file from where the execution begins in case of

a systick interrupt.

 File: irq.s

Routine : (macro) irq_wrapper_type2, C_function, isr

mailto:jdoshi@ncsu.edu
mailto:sgupta20@ncsu.edu

● File : cpu_support.s

Routine : _interrupt

Only for call_level == TCL_TASK does the sp gets pointed to the top of the stack

(_system_stack_). This is because otherwise it’s an irs_to_isr call in which case the data from

the previous isr is still saved on the system stack, and so sp should not be pointed to the top of

the stack.

● File : cpu_support.s

Routine : int_from_int

● File : cpu_support.s

Routine : int_return

Whenever interrupt occurs the core does the below:

1. CSPR is stored in the SPSR of the new mode (IRQ Mode in our case).

2. lr_irq = pc

Hence if nested interrupts are allowed without any precautions, lr would get corrupted

(previous isr’s lr would be overwritten) . Therefore to support nested ISR’s move

processing to System stack after saving lr_irq in System stack (and this can be done

recursively)

Therefore, towards the end of the interrupt, the lr_irq value needs to be popped from the

System stack (as it was stored there at the beginning of the ISR).

● File : cpu_support.s

Routine : ret_int

● File : cpu_support.s

Routine : dispatcher

Open Points / Key Observations:

1. Entire ISR is executed from the System stack and this architecture is followed to support

nested interrupts, so that a given isr’s lr doesn’t get corrupted when another isr occurs

within it.

2. While the IRQ interrupts are disabled explicitly in int_from_int, we couldn’t figure out yet

where/when are they enabled again.

3. Analysis of the int_from_int code shows that in case of preemption, before the

preempting task’s execution is begun sp is pointed back to the preempted task’s stack

(and not the system stack). This implies execution of the preempting task occurs in the

preempted task’s stack. As such, this should support nested preemptions. We need to

figure out what is preventing this (nested preemptions) from happening. Of course, the

fact that interrupts are disabled (and hence the scheduler/kernel is suppressed) is the

root cause, however, if we resolve that, then do we have any other blocking point to

prevent nested preemptions? We don’t think so, based on our current understanding of

the code.

4. We have studied the theoretical aspects of PTS algorithm but haven’t started with the

implementation yet, as it would be premature to do so without having a kernel that

supports nested preemption. We plan to take it up once we are done with the

implementation and testing to support nested preemptions.

Tasks Accomplished (with reference to the Project proposal):

Task Team Member

Understand the complete assembly code used
for ‘dispatch’ and ISR routines

Jimit

Analyze the impact of making changes in the
kernel scheduler on any other part of nxtOSEK

Saransh

Documentation of understanding, preparation
of interim report

Jimit & Saransh

Tasks in progress / planned:

Task Team Member Date

Coordinate with nxtOSEK kernel
designers/contributors and also
Dr.Mueller for their support in
understanding the issue with
preemption or the rationale behind
present implementation

Saransh & Jimit 4/4/2014

Design algorithm and
implementation to resolve the
preemption issue

Jimit 4/15/2014

Design test cases and perform
validation

Saransh 4/20/2014

PTS algorithm design and
implementation

Saransh 4/22/2014

PTS test and validation Jimit 4/24/2014

Final report preparation Saransh & Jimit 4/25/2014

Presentation Saransh & Jimit 4/27/2014

PTS implementation is subject to timely and successful completion of nested preemption

implementation.

