
Fully Preemptive nxtOSEK Kernel with Preemption Threshold Scheduling

Jimit Doshi (jdoshi@ncsu.edu) and Saransh Gupta (sgupta20@ncsu.edu)

We present below the work done so far to enable nested preemptions on the nxtOSEK kernel.

Algorithm:

After analyzing the original algorithm, we have come up with a new approach to allow nested

preemptions.

Summary of the new program flow:

1. We create 3 new data structures in the task control block as below :

a. tcxb_spsr[] : To store the SPSR value of the interrupted task

b. tcxb_lr[] : To store the return address of the interrupted task i.e. address of the

location where a given tasks was preempted

c. tcxb_preempt_flg []: Flag used to indicate preemption. Whenever a high priority task

preempts a lower priority task, the high priority task’s tcxb_preempt_flg is SET.

2. While running the kernel assembly code in ISR, if it is realized that (runtsk! = schedtsk), then

we set the tcxb_preempt_flg[schedtsk] = 1. Also, the interrupted task’s spsr and lr values are

saved in its tcxb_spsr & tcxb_lr locations respectively. tcxb_pc of runtsk is set to

‘context_restore’.

3. After this, the ‘int_return_preemption’ code is run where the ISR is ‘returned’ to a high

priority task. This is in contrast to the previous execution where the preempting task is run

while still the ISR has not yet returned, which was the main reason why nested preemptions

were not possible with that approach.

4. Subsequently, whenever the preempted task is scheduled again, first its context is restored

from ‘context_restore’. Thereafter, SPSR is restored and then pc is set to LR value.

mailto:jdoshi@ncsu.edu
mailto:sgupta20@ncsu.edu

Flowchart & Code Snippets:

context_restore:
 ldmfd sp!, {r4-r7} // restore non destructive registers
 b task_return

task_return:
 @get spsr and lr in r0, r1
 ldmfd sp!, {r0,r14} //r0 = spsr, r14 = lr
 mov r9, sp // save task stack sp in r9
 ldr sp, =__system_stack__ //Store spsr and lr on _system_stack
 bic sp, sp, #7
 stmfd sp!, {r0-r1}
 mov sp,r9 //Change sp again to task stack
 ldmfd sp!, {r0-r3,r8-r11, ip, lr}

ret_int:
 ldr r0, =runtsk // tcxb_sp[runtsk] = sp
 ldrb r0, [r0]
 ldr r1, =tcxb_spsr
 ldmfd sp!, {r2,r3} //r2 = spsr, r3 = lr
 str r2, [r1, r0, asl #2]
 ldr r1, =tcxb_lr
 str r3, [r1, r0, asl #2]
 stmfd sp!, {r4-r7} // save remaining nondestructive regs
 ldr r1, =tcxb_sp
 str sp, [r1, r0, asl #2]

 ldr r1, =tcxb_pc // tcxb_pc[runtsk] = "context_restore"
 ldr r2, =context_restore
 str r2, [r1, r0, asl #2]
 ldr r0, =schedtsk // tcxb_preempt_flg[schedtsk] = 1
 ldrb r0, [r0]
 ldr r1, =tcxb_preempt_flg
 mov r2, #1
 str r2, [r1, r0, asl #2]
 b dispatcher // jump to "dispatcher"

dispatch_task:
 ldr r0, =tcxb_pc
 ldr r1, =runtsk
 ldrb r1, [r1]
 ldr r0, [r0, r1, asl #2]

 ldr r2, = tcxb_preempt_flg
 ldr r3, [r0, r1, asl #2]
 cmp r3, #1
 beq int_return_preemption
 //CHECK_PREEMPTION_FLAG -> IF FLAG IS TRUE, JUMP TO

‘int_return_preemption’
 bx r0

int_return_preemption:
 @ end of interrupt by doing a write to AIC_EOICR
 @ just following the lejos convention
 ldr r0, =0xFFFFF130
 str r0, [r0]
 @switch to irq stack
 msr cpsr, #0XD2
 msr spsr, #0x10 // USER mode + no flags
 stmfd sp!, {r0}
 ldmfd sp!, {pc}^ // Return from interrupt & mode change!

Risks & Open Points:

1. We haven’t been able to figure out how to manage the program flow when we want to

return back to the preempted task. We have to perform two operations at that time :

a. Restore all the registers that are saved on the task’s stack

b. Set pc to the LR value stored in tcxb_lr[]

To retrieve the LR value strored in tcxb_lr , we need atleast 2 registers. However, we

can’t use any register once their context has been restored from the stack. And

hence, unless we get the LR value somehow without using any of the registers, we

won’t be able to jump back to the previous context. This is the only point remaining

before we begin to test our implementation.

2. Implementation of PTS does not appear to be feasible at this point as it has taken

considerable efforts to decode the existing program flow and then modify it to suit our

needs: all in ARM assembly language.

Tasks Accomplished (with reference to the Project proposal):

Task Team Member

Design algorithm to resolve the preemption
issue

Jimit

Design & implementation of test cases Saransh

Documentation of understanding, preparation
of interim report

Jimit & Saransh

Tasks in progress / planned:

Task Team Member Date

Resolve the implementation issues
and run the test cases

Saransh & Jimit 4/25/2014

Final report preparation Saransh & Jimit 4/27/2014

PTS implementation shall be done if time permits.

