
Support for Nested Preemption in nxtOSEK

Real Time Computing Systems Project Report
http://www4.ncsu.edu/ sgupta20/pts.html

Saransh Gupta Jimit Doshi
sgupta20@ncsu.edu jdoshi@ncsu.edu

1. INTRODUCTION
In real-time computing scenarios, we are concerned

with logical as well as temporal accuracy of the results.
While developing algorithms or performing schedula-
bility analysis, preemption overheads are usually ig-
nored even, though it’s an operation that consumes fi-
nite amount of time. Preemption allows higher priority
tasks to halt the lower priority tasks, though this need
not be necessarily required to meet task deadlines. Our
concern is not to get the results as soon as possible
but soon enough to just meet the deadlines of all the
tasks. Algorithms which meet deadlines and minimize
preemptions in order to decrease overheads have been
developed.

The nxtOSEK is a Real-Time Operating System for
the AT91SAM7S256 ARM7TDMI controller, with ca-
pabilities of ANSI-C/C++ programmability. The nx-
tOSEK kernel cannot be used to demonstrate any such
algorithm, since it does not support nested preemption.
The task scheduling in the nxtOSEK kernel is governed
by a 1ms ISR routine. When a higher priority task
preempts a lower priority task, it has been observed
that this 1ms ISR(and hence the task scheduler) is sup-
pressed for the duration of execution of the higher pri-
ority task. This causes an equivalent shift in the release
times of all the subsequent tasks and the entire timing
behaviour of the nxtOSEK kernel is skewed.

The nxtOSEK kernel has been purposefully designed
to prevent successive instances of preemption i.e. the
kernel does not support a case where after one preemp-
tion event, while the preempting task is yet to finish its
execution, it is preempted in turn by an even higher pri-
ority task. In this project, we attempted to resolve this
by modifying the current kernel behavior. The article
has been divided into five sections, Background, that
explains the current kernel behavior and highlights the
problem in it, Design, that encompasses the suggested
modifications in the kernel, Implementation, depicting
the changes done to achieve the goal, Validation, de-
fines the test-cases used to test the modified kernel and
Results,presenting the output of the modification.

2. BACKGROUND
We describe below some of the relevant implementa-

tion details regarding nxtOSEK:

1. runtsk : The currently running task’s task ID is
stored in runtsk.

2. schedtsk : This is the task that the scheduler eval-
uates as the highest priority task.

3. File structure :

a. irq.s - Has the assembly routine for IRQ in-
terrupt handler.

b. cpu support.s - Assembly routines to dispatch
and preempt tasks.

c. init.s - SWI ISR handler added here.

We present below a high level discussion of nxtOSEK’s
current algorithm to deal with preemption, it’s limita-
tions and our approach to resolve them. Let us first
consider the default behavior of the nxtOSEK kernel
and understand how it doesn’t allow nested preemp-
tion. The nxtOSEK’s kernel scheduler runs from a 1ms
timer ISR. Every 1 ms the currently running task is in-
terrupted and the scheduler runs to look for ready tasks
based on the period of each task (for a typical periodic
system). Accordingly, the highest priority task amongst
all the ready tasks and the currently running task is
evaluated and updated as schedtsk. Thereafter the ker-
nel compares the values of schedtsk and runtsk. If they
are the same, it implies that the currently running task
is the highest priority task and no preemption is re-
quired. However, if they are different, then it is a case
of preemption as a higher priority task than the current
runtsk is now ready. Consider the simpler case of non-
preemption first. If schedtsk and runtsk are equal, then
scheduler has to return back to the interrupted task
from the ISR directly and resume task execution from
the point where it was interrupted. However in case of
preemption, the higher priority task is run from the ISR
itself i.e. the ISR is not ‘returned’ as long as the higher
priority task’s execution is not completed. Thereafter,
the execution control returns back to the pending ISR.
From here, the ISR returns back to the preempted task



to resume it’s execution. Evidently, since the preempt-
ing higher priority task is run from the ISR itself, it
leads to the following while it is being executed:

1. No kernel/scheduler calls while the higher prior-
ity task is running. This is because the current
ISR routine (which runs the scheduler) has not
‘returned’ yet.

2. Nested preemption is not possible, as no new higher
priority task shall be evaluated for readiness since
the kernel itself is no longer running every 1 ms
(assuming the more general case of the higher pri-
ority task having an execution time greater than
1ms).

3. Skewed (delayed) release times of all subsequent
tasks as the scheduler is suspended for the execu-
tion time of the higher priority task.

3. SYSTEM DESIGN
We attempted to modify the nxtOSEK kernel so that

it supports nested preemption. For every instance of
the 1ms ISR when the kernel is executed, the basic ker-
nel activities such as updating the list of ready tasks
and selecting the highest priority schedtsk remains un-
chaged. So does the execution flow in case schedtsk is
evaluated to be the same as runtsk i.e. a case of no pre-
emption. However, in case of preemption, we propose
the following algorithm:

1. Identify that preemption needs to be done based
on the comparison between schedtsk and runtsk.

2. Save the LR (link register) value of ISR which rep-
resents the address from which the low priority
task’s execution should resume. Begin execution
of the higher priority task by ‘returning’ from the
1ms ISR to the higher priority task i.e. while the
lower priority task was originally interrupted by
the 1ms ISR for kernel execution, the ISR actually
‘returns’ to a higher priority task. This serves two
purposes:

a. 1ms ISR execution is completed before the
high priority (preempting) task’s execution is
started. As a result, while the high priority
task is running, the 1ms ISR can reoccur peri-
odically and the kernel is no longer suspended
unlike the case in current implementation of
nxtOSEK (as detailed above).

b. Preemption of the lower priority task by higher
priority task i.e. transfer of execution control
to the higher priority task.

3. Whenever the low priority task is scheduled again,
it’s execution should resume from the LR value of
the ISR saved previously in step 2 above.

4. IMPLEMENTATION
Here we discuss the specifics of code implementation

for our suggested approach. Wherever necessary, we
have compared it against the current nxtOSEK im-
plementation and also provided relevant details of the
ARM architecture.

1. ARM processor has several operating modes such
as IRQ, FIQ, System, Supervisor etc. which are in-
voked by a program’s execution status (exceptions,
interrupts, undefined memory reference, etc). All
of these modes have certain privileges and banked
copy of SPSR (Saved Program Status Word), SP
(stack pointer) and LR (link register) registers.
System and User mode share exactly the same reg-
isters but System mode has additional privileges.

2. At any given point of time during a task’s execu-
tion in the User mode, the CPSR (Current Pro-
gram Status Register) register maintains details
such as the processor mode, interrupt enable/disable
status and flags corresponding to the most recent
ALU operation (negative, overflow, zero, etc). When-
ever an interrupt/exception occurs, a correspond-
ing mode change is performed by the ARM core
(for e.g. in case of a 1ms timer interrupt, the pro-
cessor mode changes from the User mode to the
IRQ mode). At this instance, the current value of
CPSR of the User mode is copied into the SPSR
value of the new mode. Also, the address of the
next instruction in the task that was interrupted
in the User mode is copied to the banked LR reg-
ister of the new mode by the core. Moreover, it
is the banked versions of the SP and LR registers
(for e.g. sp irq and lr irq instead of sp and lr of
the User mode) that are effectively used in the new
mode now. This sequence helps to restore the con-
text back to the User mode whenever required, as
the CPSR for the User mode can be set back to
the saved SPSR value of the current mode and ad-
dress of the instruction to be returned to in the
User mode is recovered from the LR of the new
mode.

3. We consider the execution flow from the instant
the 1ms timer ISR occurs. Consider a certain low
priority task Task LP is being executed when the
ISR occurs. The ARM core changes the mode from
User mode (tasks are run in the User mode) to the
IRQ mode. The CPSR value at the instance of
interruption for Task LP is saved in IRQ spsr and
IRQ lr has the address of instruction in Task LR
from where it’s execution should be resumed after
the ISR returns. The interrupts are also disabled
by the core.

4. To support nested interrupts, as depicted in Fig-



Figure 1: irq s: Switch between IRQ and SYSTEM Mode

Figure 2: interrupt



Figure 3: int from int



Figure 4: int return



Figure 5: ret int



Figure 6: dispatcher nxtOSEK



ure 1, the nxtOSEK kernel follows the standard
strategy of saving the spsr irq and lr irq on stack
memory and enabling interrupts thereafter so that
these values can be retrieved in spite of a new in-
terrupt. However, the stack used by nxtOSEK
is the interrupted task’s stack itself and not the
IRQ stack. This is done by manually switching the
mode to System mode from the IRQ mode, then
saving all the registers for the interrupted context,
and thereafter saving the spsr irq and lr irq val-
ues on the (User) stack. Also, all the subsequent
processing is done in System mode (and not IRQ
mode).

5. Next, as we can see in Figure 2 and 3, the stack
pointer is made to point to system stack and the
C routine for servicing the ISR (user 1ms isr type2)
is called. This routine in turn invokes the alarm
routine SignalCounter() which updates the list of
ready tasks based on their periods and also the
value of ‘schedtsk’ to the task id of the highest
priority ready task. As seen in Figure 2, once the
final value of ‘schedtsk’ is generated after pars-
ing through all the ready task, the control returns
back from the C function to the assembly ISR rou-
tine where ‘runtsk’ and ‘schedtsk’ are compared. If
they turn out to be equal, it’s a trivial case of non-
preemption as all that needs to be done is restore
the saved context, and ‘return’ from the ISR to the
interrupted Task LP. This is done in the assembly
section ‘int return’ (Refer to Figure 4)of the code
in which after restoring all the context from the
task’s stack, as also the irq lr and irq spsr values,
the mode is changed from System mode to IRQ
mode. The program control is actually reverted
back to the interrupted task by directly modifying
program counter’s (pc) value to irq lr.

6. In case of preemption, the values of ‘schedtsk’ and
‘runtsk’ won’t match(Refer to Figure 5) and as
such the program flow jumps to ‘ret int’ instead
of ‘int return’. We propose a change in the imple-
mentation of the ‘ret int’ block of assembly code
to update the newly introduced data structures
tcxb lr and tcxb spsr which shall hold the LR and
SPSR values respectively of the interrupted task’s
context (as popped from the task’s stack). These
shall be used at a later point of time, whenever
the Task LP is rescheduled again, to continue it’s
execution from the point of preemption. We also a
need a new data structure called ‘tcxb preempt flg[]’
to be SET as successive program would depend on
whether currently it’s an instance of preemption
that is being executed. Also note that in our pro-
posed implementation that tcxb pc[runtsk] is no
longer set to ret int r as it is no longer required

to return the interrupt after finishing the higher
priority task. Rather,in our proposed implemen-
tation, the ISR shall be ‘returned’ as a part of
preempting to the higher priority task itself.

7. We also need to modify the ‘dispatcher’ routine as
in case of preemption, in our implementation(Refer
Figure 6 and 7), we want the ISR to ‘return’ to
the higher priority task. This is in contrast to the
current nxtOSEK implementation where the pre-
empting task is run while still the ISR has not yet
returned, which was the main reason why nested
preemptions were not possible with that approach.

8. Finally, whenever the preempted low priority task
is rescheduled again, it’s pc shall be picked from
the data structure(Refer to Figure 8) tcxb pc[] which
was set to ‘context restore’ before preempting. Here,
we also make use of the SWI instruction to invoke
Supervisor mode as we need access to a separate
stack (apart from the User Mode) to restore all
the context registers and also branch out of the
low priority task.

9. When the SWI instruction is executed, the control
jumps to the ‘swi handler’ ISR . Here, depend-
ing upon the argument passed with the SWI in-
struction, tcxb lr[] and tcxb pc[] values are either
pushed or popped from the stack, to resume the
execution of the preempted task.

10. The SWI instruction thus helps to achieve the dual
objectives of restoring the previously interrupted
task’s context and yet use stack based operations
to jump to that task. It’s nor possible to do so
without an access to alternate stack and stack pointer,
which is essentially what SWI ISR provides us
with.

5. VALIDATION
In Figure 9, the following test cases are discussed:

I. First is the case of preemption with two tasks where
the low priority task(red) is preempted by the high
priority(yellow) task at instant 5.

II. Second case depicts nested preemption where the
medium priority(yellow) task preempts the low pri-
ority task(red) at instant 10 and is preempted by
the high priority task(green) at instant 15.

6. RESULTS AND OPEN POINTS

I. The scheduler is no longer suppressed during the
execution of high priority task. This is because
the ISR is completed before the high priority task
begins execution. Hence, even when the high pri-
ority task is executing the scheduler executes pe-
riodically at 1ms.



Figure 7: dispatcher Suggested





Figure 9: Test Case

II. We weren’t able to demonstrate successful return
to the preempted task after the high priority task
finishes its execution. Instead, we observed the
controller getting reset after the completion of the
higher priority task. We couldn’t resolve this due
to limited debug/simulation capabilities.

7. ACKNOWLEDGMENT
We would like to sincerely thank Dr. Frank Mueller

for initiating the idea and continuously discussing our
design. The suggestions provided by Dr. Mueller turned
out to be fruitful in understanding the issue and design-
ing its solution.

8. REFERENCES
[1] Andrew N. Sloss, Dominic Symes, Chris Wright

and John Rayfield, ARM System DeveloperâĂŹs
Guide.

[2] SWI Instruction Handling.
http://www.heyrick.co.uk/assembler/swi.html.

[3] SWI Instruction Handling.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0040d/Cacdfeci.html.

[4] ARM Assembly.
http://www.coranac.com/tonc/text/asm.htm.

[5] ARM Interrupt Exception Handling.
http://www.iti.uni-
stuttgart.de/ radetzki/Seminar06/08report.pdf.

[6] The nxtOSEK. http://lejos-osek.sourceforge.net/.
[7] The OSEK specs.

http://portal.osek-vdx.org/files/pdf/specs/.


