
Interim Report 2
Neha Gholkar Xiaoqing Luo

Milestones
Week 1 :
Complete the literature survey and study about existing work
(Neha and Xiaoqing) -Done

Week 2 :

Build vanilla scheduler simulator (Neha) - Done
Come up with task sets that would be fed into the simulator and perform static
timing analysis considering all the possible dvfs frequencies (Xiaoqing) - Done

Week 3 :

1. QoS tracking (Xiaoqing)

We have implemented a QoS metric based on deadline misses. We set a window
size (eg. 1000 ticks) and we define maximum number of misses that we allow in a
window (eg. 10 misses). This window is a moving window and can be
implemented as a cyclic array. As the window moves forward we exclude the
misses that we recorded in the past.

For example, if the window size is 8, when initialized, it looks like: InitQos()

Each job has a flag to record whether it has been considered for QoS deadline
misses calculation. When we detect that a job has missed its deadline we
increment window's corresponding index. We check the running job and jobs in
ready queue for deadline misses.

If at tick 5, a job misses its deadline, the window will be updated by
UpdateQos():

CalculateQos, gives us the QoS of the system at the instant at which it is called.
For now it gives us the total number of misses in the window. (from the above
window Qos = 1)

If at tick 9, 2 jobs miss their deadlines, we replace (time%window_size) index
with the number of recorded misses (2), the window will be look like:

At 9 CalculateQos will return 2+1=3;

If at tick 13, no new jobs are missing their deadlines we set the corresponding
index to 0
(it will replace the 1 in the 5th unit of the window)

Future work on QoS is to include jobs dropped and the corresponding penalty in
addition to deadline misses and its penalty.

2. Design and implement the reaction mechanism that makes decisions about the
defensive frequency recovery and drop/execute a job (Neha)

Basic framework of the simulator

while(1)
{

1. For all tasks check if a job has been released at this time instance.
Put the job in the ready queue

2. If a task is running
i. if execution is not complete

a) sys_time++;
b) UpdateQos
c) Continue;

3. If you are here : Job has just finished its execution.
Call DVFS Algorithm to determine the frequency

4. Schedule next job from the ready queue
5. sys_time++
6. UpdateQoS

}

DVFS() sets the cFrequency to the desired frequency value for the next job
execution.

We implemented two algorithms:

1. Neha's Algorithm :
I preferred to take an experimental approach. My algorithm assumes that I don't
have any knowledge about a job's actual execution time at a particular
frequency. This algorithm doesn't look ahead while making any dvfs decisions
instead it bases its decisions

1. current Qos of the system
2. whether a job has finished early / on time (at the deadline) / past the

deadline (deadline missed)

Algorithm:

if(runtask has missed its deadline)
{

if(num_deadlines_missed in a window is close to the max allowable misses)
increase frequency heavily (by 3 steps)

else
do nothing

}
else
{

if(num_deadlines_missed in a window is close to the max allowable misses)
increase frequency lightly (by 1 step)

else
decrease the frequency heavily (by 3 steps)

}

This is a very basic algorithm and it needs to be tuned.

The basic idea is to divide the QoS by the number of different frequency
decisions that we intend to take. if max deadline misses = 10 you consider 2
distinct cases 0->5 and 5->10
In addition to this also consider whether a job of finished early contributing to
the system slack or late after having missed its deadline.

2. Xiaoqing's Algorithm:

Our algorithm is based on dynamically observing the current state of Qos, and
the state of current running job. We make our decision to change frequency

based on whether the job finished before deadline, and whether the
CalculateQos() is larger than some threshold. We also consider about the next
job in the ready queue and make the next job finish on time by selecting the
appropriate frequency.

The Pseudo code of this DVFS algorithm is :

int DVFS()
int qos = CalculateQos();
int num_miss = WINDOW*max_missing_ratio;
if(qos > num_miss) //if the number of misses is larger than maximum

allowable misses, terminate the simulation and report failure
exit(0)

if no task in the ready queue //if its idle time
do nothing and return

if runtask finished later than its deadline
if qos > num_miss*P_of_QOS

int need_exec = next_job_execution_time – (runtask_finish_time
– runtask->deadline)

search in the frequency<->execution_time array to set
appropriate frequency //increase the frequency

return the new frequency index
else

do nothing //if the Qos is very good, don’t need to increase the
frequency

if runtask finished earlier than its deadline
if (qos > num_miss*P_of_QOS) //means the Qos of current system is

already bad, so don’t decrease frequency
do nothing and return

else
int need_exec = next_job_execution_time – (runtask_finish_time

– runtask->deadline)
search in the frequency<->execution_time array to set

appropriate frequency //decrease the frequency
return the new frequency index

Week 4: Run the tasks sets developed by Xiaoqing on the simulator and interpret
the results (Xiaoqing, Neha)
Neha:

You can see in this result that the frequency transition follows the QoS. Its
obvious because this is a history based approach. While running the simulation
we see that depending on th task set we get varying average frequencies.

Xiaoqing:

In this result, you see that the frequency stabilized at 2-2.5GHz (lower than what
we see in the previous approach). However here we have prior knowledge about
the future job's execution times that aids in making more accurate frequency
decisions.

Week 5 : Debugging and further experimentation (Xiaoqing, Neha)
Week 6 : Presentation and final report submission (Xiaoqing, Neha)
References:

 Dynamic Voltage and Frequency Scaling in Multimedia Servers, Alaa Brihi,
Waltenegus Dargie, Advanced Information Networking and Applications
(AINA), 2013 IEEE 27th International Conference

 Power-Aware CPU Management in QoS-Guaranteed Systems, Saowanee
Saewong, PhD. Thesis, Carnegie Institute of Technology

 http://moss.csc.ncsu.edu/~mueller/rt/rt09/readings/projects/g5/

