
CSC714 Project Final Report, Spring 2014

Android based NXT Steering
Lei Wu

lwu4@ncsu.edu

Project webpage: http://www4.ncsu.edu/hidden/csc714-project.html

Introduction
Due to the limited resources (i.e., sensors) provided with the NXT vehicle, the
steering (i.e., including steering autonomously and avoiding obstacles when roaming
around the floor of the lab, see the description of problem 2 in HW3 [1] for details) is
not easy (if not impossible). Conversely, smartphone devices (e.g., phone or tablet)
always provide plenty hardware (e.g., gyro, compass [2] and camera [3]) to support
lots of functionalities.

In this project, we try to provide the NXT vehicle more information with Android
device to assist the steering work. Specifically, an Android phone will be bound
together with the NXT vehicle, and they will communicate with each other through
the Bluetooth. When steering, the Android phone will detect the environment, and
send the analyzed results to the NXT vehicle. The NXT vehicle then will make
decision on roaming by considering both the received information and those
collected by its own. We believe that the Android device is a good support to
enhance the ability of the NXT vehicle.

We have designed and implemented a prototype to demonstrate the idea. Although
the performance is not as good as our expectation (due to the unstable/unreliable
detections and some other issues), we successfully collected and analyzed related
information, and sent them to the NXT to assist the steering work. In the following,
we will describe and discuss the design, implementation and challenges of our
system respectively.

mailto:lwu4@ncsu.edu
http://www4.ncsu.edu/hidden/csc714-project.html

System Design
Figure 1 depicts the framework of the proposed system. Basically, the Android
phone communicates with the NXT vehicle through Bluetooth. Thus we have a
communication module in Android side as “master”, while the NXT is treated as
“slave” and we have a corresponding task named BTTask to receive messages from
Android phone. The master, i.e., Android communication module, performs more
work than the slave, including enable/disable Bluetooth, connect/disconnect with
the NXT vehicle (whose address is hardcoded) and send out collected messages
asynchronized (it is handled by a new thread). BTTask in NXT side interprets the
received messages according to the predefined protocol and delivers them by using
resource protection mechanism of NXT.

There are another two Android modules: sensor processing and image processing.
The former catches detected data from accelerometer sensor and magnetic field
sensor, and calculates the corresponding orientation information. The latter is able
to analyze the image/video capture of the environment observed by the camera.
Particularly, it tries to detect the relative position of the track (i.e., the two blue
lines). All collected and analyzed results will be sent to the NXT through the
communication module.

Beyond BTTask, we may have different tasks to serve our purpose. For example, we
can have one task to detect the obstacles by using the touch sensor. In all, the NXT
shall utilize all information received from the Android side and collected by its own
to guide the steering work.

Sensor Processing Module

Accelerometer sensor

Magnetic Field sensor

Image Processing Module

Camera/Video

Communication Module

Bluetooth

Android

NXT

MotorTask

LightTask

LCDTask

BTTask

Figure 1: System Framework

Implementation and Challenges
We chose Nexus 4 (Android 4.4 with build number KRT16S) and the basic NXT
components provided by the professor [4] as the experimental platforms. The whole
system is Java and C code mixed (i.e., the Android side is all Java code, while the NXT
side is C code). The system UI of the Android side is shown in Figure 2.

We implemented the communication module and BTTask mainly based on [5].
However, some modifications are necessary to make them work properly. For the
communication module, for example, the createRfcommSocketToServiceRecord API
call is not useful in the recent Android devices (< API level 10), we shall use
createInsecureRfcommSocketToServiceRecord instead (a more compatible way is to
select them according to the Android version). Furthermore, the corresponding send
method needs to be modified to support multiple bytes delivering. For the BTTask,
sample code in [5] does not work (because we used C rather than C++). Fortunately
we have figured out the right way for communication.

For the Android side, the sensor processing module somewhat is easy to implement,
i.e., just implementing the interface SensorEventListener and record information
once there is any updates. The key point is to calculate the orientation from the
collected data, and [6] provides a good reference for the calculation. However, due
to some unknown issue (maybe the unstable way to place the phone?), the two
sensors always specify SENSOR_STATUS_UNRELIABLE warning on the accuracy
(which has to be ignored otherwise no sensor data can be fetched).

The image processing module is the most complicated component in our
implementation. The goal is to calculate the offset of the current position away from
the middle point of track (i.e., the two blue lines), which at least can help the NXT to
adjust the speed of its left and right motors. Initially we tried to perform the image
recognition by ourselves, which based directly on the snapshots from the camera

Figure 2: System UI of Android Side

and sample objects (i.e., the pictures of the two blue lines of the track). However,
such approach has been proven infeasible because the pictures of the sample
objects always change with the motion of the NXT vehicle. Thus we adopted an
indirect way to solve this problem. It derives from the Erik Hellman’s sample code [7]
of camera frame by using OpenCV [8]. First of all, we can get camera frame data by
using VideoCapture provided by OpenCV. Then we filter the other colors but the
track (i.e., the two blue lines), and use the FeatureDetector functionality also
provided by OpenCV to get the key points of the remainder color blobs. After that
the average position can be calculated.

Figure 3 just gives the effects of part of the image processing. The left screenshot is
the one before the filtering, while the right is the one after the filtering. The green X
indicates the calculated average position. Note that in these two screens the average
positions are almost the same, however, if there exist many noises (e.g., obstacles),
the average position before filtering is quite bad.

For the NXT side, we have implemented three tasks in our current prototype besides
the BTTask. As shown in Figure 1, the MotorTask is used to update/set motor speed,
the LightTask is used to detect track by using the light sensor and the LCDTask is
used to display information on the LCD. We have implemented these tasks based on
a very simple strategy, but the performance is not quite good as what we expected.
Thus its improvement is the most important and challenged work in the future.

Figure 3: Screenshots before and after filtering

Discussions and Limitations
As mentioned before, we are able to analyze the collected data and provide
potential useful information for the NXT from the Android device. However, there
are still some challenges need to be considered. For example, the two sensors and
camera preview are quite sensitive, and can be affected by even very small motions.
In the NXT side, we have not found a solution/algorithm which is able to effectively
and efficiently guide the steering. Our current prototype just implemented a
straightforward strategy which definitely does not take full advantage of the
collected information.

Reference
[1]http://courses.ncsu.edu/csc714/lec/001/hw/hw3/hw3.html
[2]http://developer.android.com/guide/topics/sensors/index.html
[3]http://developer.android.com/guide/topics/media/index.html
[4] http://courses.ncsu.edu/csc714/lec/001/
[5]http://stackoverflow.com/questions/4969053/bluetooth-connection-between-
android-and-lego-mindstorm-nxt
[6] http://stackoverflow.com/questions/14433182/direction-using-sensor
[7] http://developer.sonymobile.com/knowledge-
base/tutorials/android_tutorial/get-started-with-opencv-on-android/
[8] http://opencv.org/platforms/android.html

http://developer.android.com/guide/topics/media/index.html
http://stackoverflow.com/questions/4969053/bluetooth-connection-between-android-and-lego-mindstorm-nxt
http://stackoverflow.com/questions/4969053/bluetooth-connection-between-android-and-lego-mindstorm-nxt
http://stackoverflow.com/questions/14433182/direction-using-sensor
http://developer.sonymobile.com/knowledge-base/tutorials/android_tutorial/get-started-with-opencv-on-android/
http://developer.sonymobile.com/knowledge-base/tutorials/android_tutorial/get-started-with-opencv-on-android/

