
Final Report
Xing Pan (xpan)

Project introduction:
In modern CPU, there are many cores and several memory controllers in one processor. For example, in the 2-way SMPs

with AMD Opteron 6128, there are 16 cores and 4 memory controllers in 1 node. Each core access different memory

controllers will get the different latency. So it is not an easy work to predict the worst case execution time when we run

the program on the multicore system.

The goal of this project is to find a new virtual and physical address mapping algorithm help us to predict the memory

access latency exactly in the multicore system.

Tasks accomplished:

Step 1: verify there is the memory latency existed.

To verify the memory access latency existed, I did the brute-force test program on the 2-way SMPs with AMD Opteron

6128. Use ”go back and forth” to avoid the hardware prefetch and ”calloc a large address space” to avoid the cache hit.

Utilize the /proc/pid/pagemap and /proc/pid/maps file to map the virtual address to physical address. Get the following

data to verify that there exist the latency which caused by accessing multiple memory controllers.

Virtual address : 0x2B82002EB010

 Physical address: 0x1DAF32010,

 Node: 0, channel: 1, rank: 3, bank: 2, row: 6959, column: 512

 latency: 8111us *

Virtual address : 0x2B82FE2ED010

 Physical address: 0x2055BE010,

 Node: 0,channel:0, rank: 3, bank: 3, row: 15829, column: 2560

 latency: 12466us

Virtual address : 0x2B8535AEF010

 Physical address: 0x611485010,

 Node:2,channel: 1, rank: 2, bank: 0, row: 16020, column: 2304

 latency: 17152us

Virtual address : 0x2b85f8af0010

 Physical address: 0x556E74010,

 Node: 2, channel: 1, rank: 3, bank: 6, row: 4846, column: 2048

 latency: 17006us

Virtual address : 0x2b86f7af1010

 Physical address: 0x80ED03010,

 Node: 3, channel: 1, rank: 2, bank: 0, row: 7789, column: 768

 latency: 16957us

The data clearly shows that the latency from accessing different memory controller. For example, if the core access node

0 (memory controller id 0) will get the least latency. However, if it accesses the node 2 or node 3, there will be more

latency.

Step 2: Configure out the AMD Opteron 6128 architecture

In the experiment, I found that the physical address is grouped by the NodeID.

For AMD Opteron 6128, there are 4 nodes (memory controllers) in one CPU. Each node (memory controller) has

different physical address range.

Node 0: 0x0~~0x227FFFFFF

Node 1: 0x228000000~~0x427FFFFFF

Node 2: 0x428000000~~0x627FFFFFF

Node 3: 0x628000000~~0x827FFFFFF

There are 16 cores in one CPU. When one core in the CPU accesses the main memory, it will access different memory

controller and get the different access latency. The following graph is the architecture of AMD Opteron 6128.

There are some observations:

1. When a program run on one core, the nearest memory controller is preferential.

 I did another experiment about this observation. The program just calloc 8GB which is no more than the physical

space in one memory controller. The result shows that the program just use the nearest memory controller.

2. It takes least latency when Core 0,1,2,3 access memory controller 0. It takes the longest latency when they access

memory controller 2 and 3. However, it takes medium latency when they access memory controller 1. Same situation for

the other cores. For example, for core 0

 memory controller 0: 9000us *

 memory controller 1: 12000us

memory controller 2,3: 17000us

Step 3 test the contend and latency between multiple threads in multicore system

Use a latency test program. In this program, it does the initialization (calloc a memory space) at this main thread and

creates several threads. Each thread will bind to different core and access a same memory controller respectively.

Then I measure the accessing latency for each thread and compare the latency with the latency if there is only one

thread access the memory controller (same large memory space).

The following is the data:

One thread assigned on the core 8 and access the memory controller 3 :

latency is 9400us *

Two threads, one of them assigned on the core 8 and the other one assigned to core 9. Both of them access the memory

controller 3 :

the maximum latency is 12700us, the minimum latency is 10900us

Four threads, assign them to core 8, core 9, core 10 and core 11 respectively. All of them access the memory controller

3 :

the maximum latency is 19500us, the minimum latency is 12200us

Four threads, assign them to core 0, core 4, core 8 and core 12 respectively. They access the memory controller 0, 1, 2,

3 correspondingly:

latency is 9300us

There are some observations:

1. The latency is much longer than the latency if there is only one thread access one memory controller alone. (about

9000us).

2. The more threads access a same memory controller, the worse latency they get. For example, the latency when I use

4 threads is much longer than only 2 threads.

3. If we use multi-threads to access the same memory controller, there definitely is a contend. Besides, the latency is

variable and irregular fluctuated. For real time system, It is very hard to predict it.

4. When a program run, it is very hard to know which memory space it uses. Although the operation system has the

“first tough” mechanism, the program still use multiple memory controllers instead of single memory controller

potentially.

Step 4: Coloring algorithm design and Evaluation

Design the coloring algorithm:

In this step, I designed the main memory coloring allocation algorithm based on memory controller.

The basic idea of this algorithm is group the main memory based on the memory controller. All the banks in one

memory node (controller) would like to be colored in one group. For AMD Opteron 6128, there are 4 nodes (memory

controllers) in one CPU and 32 GB main memory. So we color each memory node as one color. There are 4 colors in all

the 32GB main memory space.

Color 0: 0x0~~0x227FFFFFF all the 32 banks in node 0, 8GB

Color 1: 0x228000000~~0x427FFFFFF all the 32 banks in node 1, 8GB

Color 2: 0x428000000~~0x627FFFFFF all the 32 banks in node 2, 8GB

Color 3: 0x628000000~~0x827FFFFFF all the 32 banks in node 3, 8GB

For a program, there are several tasks (threads) in it. This algorithm will assign the different colored main memory bank

to each task. So each task will access main memory through different memory controller and use different main memory

space. Use this coloring algorithm, we can predict the memory access latency exactly and get lower worst case execution

time.

Evaluation:

(1) Correctness and non-contention

I did the experiment on the ARC system. There are 16 cores and 32 GB main memory space in one processor. The test

program creates 4 threads and allocates 4 GB memory to each thread. Each thread accesses the main memory and the

program measure the latency of it. The following data shows the memory address which accessed by each threads. I

used two allocation method, the general allocation and new coloring allocation.

For general allocation, we get the data as following:

Thread 0:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2aac30005010 0x10005D010L 0 0 2 7 3456 2304 0

0x2aac30805010 0x104751010L 0 1 2 6 3527 256 0

0x2aac31005010 0x100091010L 0 0 2 2 11648 256 0

0x2aac31805010 0x104752010L 0 1 2 6 3527 512 0

0x2aac32005010 0x111ECF010L 0 0 2 5 11934 2816 0

0x2aac32805010 0x10D395010L 0 1 2 2 11859 2304 0

0x2aac33005010 0x109326010L 0 0 3 0 3603 2560 0

0x2aac33805010 0x10D396010L 0 1 2 2 11859 2560 0

0x2aac34005010 0x11BEB7010L 0 1 3 2 12094 2816 0

0x2aac34805010 0x116F7D010L 0 0 3 7 3823 2304 0

………
 0x2aacac805010 0x332D7E010L 1 0 3 7 4269 2560 1

0x2aacad005010 0x32F9A7010L 1 1 3 0 12409 2816 1

0x2aacad805010 0x332D7F010L 1 0 3 7 4269 2816 1

0x2aacae005010 0x336D9A010L 1 1 2 3 12525 512 1

0x2aacae805010 0x335D9A010L 1 1 2 3 12509 512 1

0x2aacaf005010 0x334D9B010L 1 1 2 3 12493 768 1

0x2aacaf805010 0x335D9B010L 1 1 2 3 12509 768 1

Thread 1:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2aaab0000010 0x100198010L 0 1 2 3 11649 0 0

0x2aaab0800010 0x104785010L 0 0 2 0 11719 2304 0

0x2aaab1000010 0x157A48010L 0 1 2 5 4858 0 0

0x2aaab1800010 0x104786010L 0 0 2 0 11719 2560 0

0x2aaab2000010 0x111F41010L 0 0 2 4 3743 256 0

…….
 0x2aaab7800010 0x1210EF010L 0 1 3 5 12176 2816 0

0x2aaab8000010 0x12EF56010L 0 1 2 6 4207 2560 0

0x2aaab8800010 0x12A152010L 0 1 2 6 4129 512 0

0x2aaab9000010 0x124F31010L 0 1 3 2 4047 256 0

0x2aaab9800010 0x12A153010L 0 1 2 6 4129 768 0

……..
 0x2aab2c800010 0x32AC87010L 1 1 2 0 12332 2816 1

0x2aab2d000010 0x32698D010L 1 0 2 1 12265 2304 1

0x2aab2d800010 0x32ACC6010L 1 0 2 4 12332 2560 1

0x2aab2e000010 0x334985010L 1 0 2 0 12489 2304 1

0x2aab2e800010 0x3325A8010L 1 1 3 1 12453 0 1

0x2aab2f000010 0x32EF08010L 1 1 2 1 4207 0 1

0x2aab2f800010 0x3325A9010L 1 1 3 1 12453 256 1

Thread 2:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2aab30002010 0x157AA0010L 0 0 3 0 13050 0 0

0x2aab30802010 0x104658010L 0 0 2 7 3526 0 0

0x2aab31002010 0x21EF01010L 0 1 2 0 8047 256 0

0x2aab31802010 0x1046B6010L 0 1 3 2 11718 2560 0

0x2aab32002010 0x111CFD010L 0 0 3 7 11932 2304 0

…..
 0x2aab48002010 0x174482010L 0 1 2 0 13508 512 0

0x2aab48802010 0x171352010L 0 1 2 6 5267 512 0

0x2aab49002010 0x16BEE6010L 0 1 3 4 13374 2560 0

0x2aab49802010 0x171353010L 0 1 2 6 5267 768 0

0x2aab4a002010 0x17C165010L 0 1 3 4 5441 2304 0

…..
 0x2aabac802010 0x323EA5010L 1 0 3 0 12222 2304 1

0x2aabad002010 0x31F19D010L 1 1 2 3 12145 2304 1

0x2aabad802010 0x323EA6010L 1 0 3 0 12222 2560 1

0x2aabae002010 0x32FD0E010L 1 1 2 1 4221 2560 1

0x2aabae802010 0x32C420010L 1 1 3 0 4164 0 1

0x2aabaf002010 0x327756010L 1 1 2 6 4087 2560 1

0x2aabaf802010 0x32C421010L 1 1 3 0 4164 256 1

Thread 3:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2aabb0003010 0x21EFEC010L 0 0 3 5 16239 2048 0

0x2aabb0803010 0x104794010L 0 1 2 2 11719 2048 0

0x2aabb1003010 0x1000B2010L 0 1 3 2 11648 512 0

0x2aabb1803010 0x104795010L 0 1 2 2 11719 2304 0

0x2aabb2003010 0x111F6F010L 0 1 3 5 3743 2816 0

……
 0x2aabc2003010 0x15E8BE010L 0 1 3 3 13160 2560 0

0x2aabc2803010 0x15B2D7010L 0 1 2 6 13106 2816 0

0x2aabc3003010 0x1556A9010L 0 0 3 1 13014 256 0

0x2aabc3803010 0x15B2D8010L 0 1 2 7 13106 0 0

0x2aabc4003010 0x16800A010L 0 0 2 1 5120 512 0

……
 0x2aac2c803010 0x3273C7010L 1 1 2 4 12275 2816 1

0x2aac2d003010 0x3210F3010L 1 0 3 6 12176 768 1

0x2aac2d803010 0x3273C8010L 1 1 2 5 12275 0 1

0x2aac2e003010 0x330E77010L 1 1 3 6 4238 2816 1

0x2aac2e803010 0x32F44B010L 1 1 2 5 4212 768 1

0x2aac2f003010 0x328EEC010L 1 1 3 5 12302 2048 1

0x2aac2f803010 0x32F44C010L 1 1 2 5 4212 2048 1

From the data above, we can clearly find that there is memory bank contention between those threads. They would like

to access same memory bank and get a much long latency. Besides, for one thread, it would access different memory

node (memory controller). So the memory accessing latency is very high and unpredictable.

For the new coloring allocation based on memory controller, we get the following data:

Thread 1:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2b0ee6fcf010 0x15D3A2010L 0 1 3 0 13139 512 0

0x2b0ee7fcf010 0x15EFC2010L 0 1 2 4 13167 512 0

0x2b0ee8fcf010 0x21E093010L 0 0 2 2 16224 768 0

0x2b0ee9fcf010 0x1E4EAC010L 0 0 3 1 15310 2048 0

0x2b0eeafcf010 0x1713B3010L 0 0 3 2 13459 768 0

0x2b0eebfcf010 0x21E094010L 0 0 2 2 16224 2048 0

0x2b0eecfcf010 0x195D93010L 0 1 2 2 14045 768 0

…….
 0x2b0fe2fcf010 0x192C48010L 0 1 2 5 5804 0 0

0x2b0fe3fcf010 0x11D449010L 0 1 2 5 3924 256 0

0x2b0fe4fcf010 0x1B0C49010L 0 1 2 5 6284 256 0

0x2b0fe5fcf010 0x192C4A010L 0 1 2 5 5804 512 0

Thread 2:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2b0fe7fd1010 0x3AC911010L 1 0 2 2 6217 256 1

0x2b0fe8fd1010 0x2B9C85010L 1 1 2 0 10524 2304 1

0x2b0fe9fd1010 0x30E1C2010L 1 1 2 4 11873 512 1

0x2b0feafd1010 0x30EBED010L 1 0 3 5 11883 2304 1

0x2b0febfd1010 0x2B9C86010L 1 1 2 0 10524 2560 1

0x2b0fecfd1010 0x253E4D010L 1 1 2 5 702 2304 1

0x2b0fedfd1010 0x30EBEE010L 1 0 3 5 11883 2560 1

…….
 0x2b10e2fd1010 0x357B41010L 1 0 2 4 4859 256 1

0x2b10e3fd1010 0x359F42010L 1 0 2 4 4895 512 1

0x2b10e4fd1010 0x355F42010L 1 0 2 4 4831 512 1

0x2b10e5fd1010 0x357B43010L 1 0 2 4 4859 768 1

Thread 3:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2b10e7fd2010 0x62F5F2010L 3 1 3 6 8309 512 3

0x2b10e8fd2010 0x6A9FBD010L 3 0 3 3 10271 2304 3

0x2b10e9fd2010 0x81C5BE010L 3 0 3 3 16197 2560 3

0x2b10eafd2010 0x631FBD010L 3 0 3 3 8351 2304 3

0x2b10ebfd2010 0x6A9FBE010L 3 0 3 3 10271 2560 3

0x2b10ecfd2010 0x633FBD010L 3 0 3 3 8383 2304 3

0x2b10edfd2010 0x631FBE010L 3 0 3 3 8351 2560 3

…….
 0x2b11e2fd2010 0x75D3B5010L 3 0 3 2 13139 2304 3

0x2b11e3fd2010 0x75B3B6010L 3 0 3 2 13107 2560 3

0x2b11e4fd2010 0x75F3B6010L 3 0 3 2 13171 2560 3

0x2b11e5fd2010 0x75D3B7010L 3 0 3 2 13139 2816 3

Thread 4:

VirtualAddr PhysicalAddr Node Channel Rank Bank Row Col color

0x2b11e7fd3010 0x53C309010L 2 1 2 1 4419 256 2

0x2b11e8fd3010 0x5F4378010L 2 0 3 7 7363 0 2

0x2b11e9fd3010 0x5F5555010L 2 1 2 6 7381 2304 2

0x2b11eafd3010 0x5FBAC0010L 2 0 2 4 15674 0 2

0x2b11ebfd3010 0x5F4379010L 2 0 3 7 7363 256 2

0x2b11ecfd3010 0x5EB608010L 2 0 2 1 7222 0 2

0x2b11edfd3010 0x5FBAC1010L 2 0 2 4 15674 256 2

…………
 0x2b12e2fd3010 0x481A7C010L 2 1 3 7 1434 2048 2

0x2b12e3fd3010 0x47EE7D010L 2 1 3 7 1390 2304 2

0x2b12e4fd3010 0x483A7D010L 2 1 3 7 1466 2304 2

0x2b12e5fd3010 0x481A7E010L 2 1 3 7 1434 2560 2

From the data above, we can clearly find that there is no memory bank contention between those threads. They are

assigned different color memory and access different memory bank. Due to each thread only access the colored

memory and the latency of accessing is lower and predictable.

The result also shows that the coloring allocation based on memory controller is correct and it could allocate the

memory space to each thread based on memory controller successfully.

(2) Memory accessing latency between different threads number

The program creates different number of threads and tests the memory accessing latency under general and coloring

allocation. The test program creates 2,3,4 threads respectively and allocates 2 GB memory to each thread.

The memory accessing latency under general allocation as following:

The memory accessing latency under coloring allocation based on memory controller as following:

0

5000

10000

15000

20000

25000

30000

2-threads 3-threads 4-threads

min

max

From the graph above, we can clearly see that there is a big gap between the maximum latency and the minimum

latency under the general allocation. Especially, there is more tasks in the program, there is larger gap. We can see the

maximum latency is 34.7% more than minimum latency when there are 2 threads. However, it enlarges to almost 112.6%

when there are 4 threads in the program. So in the real time system, it is very bad because the program can’t predict the

memory accessing latency exactly.

However, the problem is not existed when we use the coloring allocation based on memory controller. The latencies are

almost same whatever how many threads. And the maximum is just 6%-8% more than minimum latency. So the system

can predict the memory accessing latency exactly under the coloring allocation. It is very important for real time system.

(3) Memory accessing latency between different memory size allocated

The program creates 4 threads and allocates them with different memory size. I test the memory accessing latency both

under general and coloring allocation.

The test program creates 4 threads and allocates 1 GB memory for each thread.

The test program creates 4 threads and allocates 2 GB memory for each thread.

The test program creates 4 threads and allocates 4 GB memory for each thread.

The memory accessing latency under general allocation as following:

0

2000

4000

6000

8000

10000

12000

1GB 2GB

min

max

The memory accessing latency under coloring allocation based on memory controller as following:

From the graph above, we can clearly see that there is a big gap between the maximum latency and the minimum

latency under the general allocation. Especially, task allocates more memory space in the program, there is larger gap.

We can see the maximum latency is 136.7% more than minimum latency when the task allocates 1 GB memory space.

However, it enlarges to almost 437% when the task allocates 4 GB memory space. So in the real time system, it is very

bad because the program can’t predict the memory accessing latency exactly.

However, the problem is not existed when we use the coloring allocation based on memory controller. The latencies are

almost same whatever how much memory space allocated. And the maximum is just 6%-8% more than minimum

latency. So the system can predict the memory accessing latency exactly under the coloring allocation. It is very

important for real time system.

(4) Better performance

Here, we can compare the average memory accessing latency under general and coloring allocation.

0

10000

20000

30000

40000

50000

60000

70000

1GB 2GB 4GB

min

max

0

2000

4000

6000

8000

10000

12000

1GB 2GB 4GB

min

max

We can clearly find that using coloring allocation based on memory controller get a much better performance than

general allocation.

Conclusion
Due there are several memory controllers in the modern CPU, the memory accessing latency is very hard to predict and

the WECT is also not exactly in real time system. This project proposes a new coloring allocation algorithm to solve the

memory accessing latency prediction problem in modern CPU. For the modern CPU, the new coloring allocation

algorithm color main memory based on the memory controller. Each task in real time system will be assigned the

different colored memory bank. As the result, we also show the correctness and latency predictable of this algorithm. So

we can apply modern CPU (multiple memory controllers) in real time system by using the coloring allocation.

Additionally, using the color allocation could also get better performance of memory accessing latency than general

allocation.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2-threads 3-threads 4-threads

general

color

0

5000

10000

15000

20000

25000

30000

35000

40000

1GB 2GB 4GB

general

color

Opening problem
1. Modify the algorithm and the kernel in the Linux. We still need to modify the allocation to make the tasks could

access the remote memory controller.

2. Try to find whether there is any other reason for the latency

3. Try to realize dynamic coloring memory allocation.

4. Consider the memory fragment problem when we assign the colored memory bank to task.

5. Now, the coloring allocation only supports at most 4 tasks. We need to modify it to support more tasks.

Reference
[1] TILEPROCESSOR ARCHITECTURE OVERVIEW FOR THE TILEPROSERIES

[2] Christopher Zimmer and Frank Mueller. Low Contention Mapping of Real-Time Tasks onto a TilePro 64 Core

Processor.

[3] Balasubramanya Bhat and Frank Mueller. Making DRAM Refresh Predictable

[4] Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst Case Analysis of DRAM Latency in Multi-Requestor Systems

[5] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo and Lui Sha. Memory Access Control in Multiprocessor

for Real-time Systems with Mixed Criticality

[6] Wei Wang, Tanima Dey, Jack W. Davidson, and Mary Lou Soffa. DraMon: Predicting Memory Bandwidth Usage of

Multi-threaded Programs with High Accuracy and Low Overhead

[7] Noriaki Suzuki, Hyoseung Kim, Dionisio de Niz. Coordinated Bank and Cache Coloring for Temporal Protection of

Memory Accesses

[8] Hyoseung Kim, Dionisio de Niz, Bjorn Andersson. Bounding Memory Interference Delay in COTS-based Multi-Core

Systems.

[9] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni . PALLOC: DRAM Bank-Aware Memory Allocator for

Performance Isolation on Multicore Platforms,

* The latency data in this document is the totally time when CPU access physical memory 524288 times.

