
Hybrid Techniques for Preventing Memory
Corruption Attacks in C

Prachi Gauriar
prachi_gauriar@ncsu.edu

Background

Survey

CRED

Cyclone

CCured

Lightweight 2-version Software Development

Lightweight analysis for signature
generation

Heavyweight analysis for fast debugging

Memory corruption attack

Exploit a memory access error to attack a system

Memory access errors

Referent and accessed memory object differ

Spatial - pointer is outside bounds of its referent

Buffer overflow, format string, deref NULL

Temporal - referent no longer exists

Dereference freed variables, dangling pointers

Background

Background

C is susceptible because it is not type-safe

Type-safety (strong typing)

Can’t operate on a value like it has a different type

Requires that memory is accessed safely

C’s safety shortcomings

Pointer arithmetic, unsafe casts

No garbage collection or explicit memory rules

Bad variable argument implementation

Approaches

Static Analysis

Analyze source code to find errors

Usually sound, all analysis is done offline

Lots of false positives, only sound relative to model

Dynamic Checking

Modify runtime to prevent errors

Usually no restrictions on code, no false positives

Targets specific error types, adds overhead

Approaches

Static/Dynamic Hybrid Approaches

Goal: best of both worlds

No false positives and catch most/all errors

Minimize runtime overhead

Basic pattern

Analyze source code to find unsafe portions

Add runtime checks to regions where analysis is
insufficient

Survey

CRED

Adds bounds checking to string buffers

Does not modify the pointer representation

Meshes better with uninstrumented code

Records the base address, size of all memory objects

Static, heap, and stack

Stores them in the object table

At dereference, looks up pointer in object table

Perform bounds checks

CRED

Pointer arithmetic presents special problems

In-bounds pointer arithmetic

Address computed from an in-bounds pointer must
refer to the same object as that pointer

Check if pointer is in-bounds

If so, find its referent

Final result of arithmetic must fall within the
referent’s bounds

CRED

Out-of-bounds (OOB) pointer arithmetic

Address computed from an OOB pointer must refer
to the same object as that pointer’s referent

For each OOB pointer

CRED creates an OOB object in the heap

OOB pointer points to that OOB object

OOB object contains the original OOB pointer’s
address and referent

CRED

After each address computation, check if result is OOB

If so, create OOB object and store it in the OOB table

If a pointer is used in pointer arithmetic

In bounds? If not, perform OOB table lookup

Use the OOB object’s address and referent to
perform a bounds check

When an object is deallocated, remove it from the
OOB

CRED

Only checks strings

String buffers are most often overflowed

Unsound

Can’t detect non-string attacks

Does not analyze type casts

Performance

Overhead < 26% in apps w/o heavy string use

Overhead of 60-130% otherwise

Cyclone

“Safe” dialect of C

Attempts to solve safety shortcomings, keep flexibility

Restricts pointer arithmetic, disallows unsafe casts

Inserts NULL checks before pointer dereferences

Requires pointers to be initialized before use

Augments varargs implementation

Adds garbage collection and region analysis to
prevent spatial memory errors

Cyclone

Several pointer kinds

Possibly-NULL (*-pointers)

Never-NULL (@-pointers)

Fat pointers (?-pointers)

Possibly-NULL are like C pointers

NULL checks inserted before every dereference

Never-NULL are optimizations of possibly-NULL

NULL checks inserted only when pointer changes

Cyclone

Pointer arithmetic is only allowed on fat pointers

Store the base address and size of the referent

size field is programmer accessible, like length in Java

NULL- and bounds-checked when dereferenced

Arrays, strings automatically converted to ?-pointers

int strlen(const char ?s) {
 int i, n;
 if (!s) return 0;
 n = s.size;
 for (i=0; i<n; i++, s++)
 if (!*s) return i;
 return n;
}

int strlen(const char *s) {
 int i = 0;
 if (!s) return 0;
 /* UNSAFE if S isn’t
 NULL terminated */
 while (*s) i++;
 return i;
}

Cyclone

Safe C-like alternative to Java

Can’t mix with C code

Tool support is lacking

No lex, yacc, etc

Analysis can reject safe code

Performance Overhead

With garbage collection: 0-185%

Without garbage collection: < 36%

CCured

Program transformation tool

Adds type-safety to C

Solves many of the same problems as Cyclone

Like Cyclone, introduces new pointer kinds

Three main kinds: SAFE, SEQ, WILD

Minor kinds: RTTI, FSEQ, others

Unlike Cyclone, infers pointer kinds based on use

Kind of pointer reflects how safely it is used

CCured

SAFE - not used in pointer arithmetic

Just require NULL-check before dereference

SEQ - used in pointer arithmetic, but no unsafe casts

Require bounds-check and NULL-check

WILD - used in pointer arithmetic, unsafe casts

Bounds-, NULL-checks, and dynamic type checking

At compile time, CCured suggests ways to make
inferred WILD pointers into SAFE or SEQ pointers

CCured

Real strength lies in its inference algorithm

< 1% WILD, < 10% SEQ

Some changes to code are required

SEQ and WILD pointers are fat

External function wrappers to convert from fat to
normal pointers

Some vararg functions like scanf require changes

sizeof should use a variable, not a type

CCured

Performance

Runtime overhead: 3-891%

Removing bc, 3-87%, average: 30.8%

bc without garbage collection: less than 50%

Sophisticated, sound analysis

Supports lots of programming paradigms in C

Works with non-instrumented code via wrappers

Drop-in replacement for gcc

Current Research

Motivation

Despite CCured’s quality, has unacceptable overhead

Security is only worth it if the cost is less than the price
of being attacked

Highly trafficked commercial servers, online stores

We want to leverage its analysis, but forgo overhead

Simplest way to do this is to maintain two very similar
versions of our software

CCured version for debugging and diagnosis

Release version

Methodology

Highly pragmatic

Development version D uses CCured

Used during coding, test, and bug diagnosis phases

Release version is conventional C code

Possibly use address space randomization or IDS

Vast majority of source is shared

D contains code in addition to or in place of R’s

Satisfy CCured’s compilation requirements

Methodology

When a security bug is found in the release version

Glean information from logs, core dumps, etc

Attempt to replay attack on version D

Currently exploring two analysis options

Lightweight - generate vulnerability signature

Heavyweight

Identify buffer, location of bug

Try to illuminate the cause via debugging tool

Lightweight

Detect an attack and automate replay

Replace handlers for SIGSEGV, SIGBUS, SIGILL

Augmented version of CCured can tell us

Which buffer was involved

Input size

Distribution of characters in the input

Based on this, we can create a vulnerability signature

Use this signature into an input filter

Heavyweight

CCured aborts with arcane message upon error

Must use debugging aids to find location of error

For complex bugs, knowing where isn’t always helpful

We augment CCured with a tool that identifies the
buffer that was accessed incorrectly

We then replay the attack to allow the user to
watch for important memory related events

Allocation/reallocation, free, pointer arithmetic

Filter events by how directly they affect the buffer

Example

http.c:112: recv expected at least 1024 bytes of readable
data, but buffer has only 224.

Problematic buffer: pPostData (0x8157f10)
Perform further analysis? y
Degree of contribution? 1

Problematic buffer: pPostData (0x8157f10)
Allocated at http.c:100 using calloc
 Element count: 224 (conn[sid].dat->in_ContentLength+1024)
 conn[sid].dat->in_ContentLength: -800
...
 Element size: 1 (sizeof(char))
Assigned to pPostData at http.c:109
...

Questions?

