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Overview

Code patching is an ancient (or at least, old) art.

The last 25 years have produced some significant advances, 
bringing code patching from an mystical art to an 
everyday tool.

I’ll talk about:
• Some old history (or nostalgia).
• Binary Rewriting
• Dynamic Instrumentation: application and kernel
• Control-flow instrumentation
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1961: The DEC DDT Debugger
Allowed code patching of the 

image in memory.

Used on the DEC PDP-1 mini-
computer.

DDT = “DEC Debugging Tape”.

Descendent of the FLIT 
debugger on the 1957 TX-0 
computer from MIT Lincoln 
Labs.
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The “Tape”
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1972: Hand-Patching a Binary
The time to read a card deck, re-assemble and re-link could be 

lengthy:
E.g., a Basic compiler on the IBM 1130

• 400 card/minute x 5000 cards = 12 minutes
• At least 10 minutes to assemble
• Similar amount of time to link.
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1972: Hand-Patching a Binary
Leave patch areas (BSS’s) scattered throughout the 

code (e.g., between functions).

When the program was in memory (core!), hand 
assemble code fixes in the patch area.

Overwrite an instruction in the original code to jump to 
the patch.

Often need to include the overwritten instruction in 
the patch area.
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1989: Pixie
In 1989, DEC (Earl Killian) introduced Pixie, a tool for 

inserting simple instrumentation code into a binary.
�Simple profiling: basic counts.
�Expensive instrumentation:

• Run-time processing of indirect jumps and calls, 
extensive register saves.

�Performance data used to feedback to optimizing 
compiler.

�Notable as the earliest binary instrumenter.
�Operated on the MIPS/Ultrix.
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1992: A Burst of New Activity
In 1992, code patching became a general purpose technique,  

making the transition from hack to technique:
� Binary rewriting: take an object file as input and produce 

a new, modified object file as output. Operates before 
execution.
Pioneer system: OM from DEC (Srivastava and Wall)

� Dynamic instrumentation:  modifying a program while it is 
executing.
Pioneer system: Paradyn/Dyninst from Wisconsin (Miller 
and Hollingsworth)
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Binary Rewriting
Benefits:

• Do not need the source code.
• Can do fine-grained instrumentation.
• Sometimes do not need symbol tables.

Drawbacks:
• Static: if you want to change the instrumentation, you have to re-

process the binary.
• Only one or a few platforms supported.
• Often requires “managed” code.
• Scarcity of tools.

Examples of use:
• Performance profiling.
• Tracing: addresses, basic blocks, functions . . .
• Sandboxing: modifying a binary to restrict its behavior (IDS).
• Simulation: intercepting operations to simulate different ones.
• Memory debugging: checking dynamic allocate/free and memory 

references for correct operation.
• Code optimization: optimizing based on the binary code.
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Dynamic Instrumentation
Benefits:

• Do not need the source code.
• Can change the code as the program executes.
• Can instrument running programs (such as servers).
• Sometimes do not need symbol tables.

Drawbacks:
• More complex than static rewriting: execution state of the 

program restricts the kind of changes you can make.
• Few tools.

Examples of use:
• Performance profiling.
• Tracing: similar to rewriting, though more expensive per op.
• Cyber forensics: controlling suspicious code.
• Memory debugging: checking dynamic allocate/free and memory 

references for correct operation.
• Dynamic code optimization.
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The OM Binary Rewriter
� The first general purpose rewriter.
� Requires symbol tables.
� Supports some interesting analyses and optimizations, 

e.g.:
• Live variable analysis.
• Dead code elimination.
• Hoisting code out of loops.

� DEC Alpha processor.
� Basis for the ATOM tracing tool

• Allows inserting calls almost anywhere in the program.
�Works on object (.o) files, not executables (a.out/.exe).
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Side Note: Object Files vs. Executables
�Object files contain relocation information:

+ All external address references (code and data) are labeled.
+ Labeling simplifies one of the hardest parts of binary 

analysis: identifying and understand embedded addresses.
+ With this address reference information, moving code 

around is much simpler.
- Requires you to have the object files.

� Executable files do not contain this information.
- Must work harder to operate on executables because less 

(possibly no) information is available in symbol tables.
- Restricts the techniques you can use for inserting or 

modifying code: efficiency, not correctness issue.
+ Can operate on a much larger variety of programs.
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Some Other Binary Rewriters
�EEL, 1995 (University of Wisconsin). 

SPARC/Solaris.
• Operates on executables and needs symbol table.

�Etch, 1997 (University of Washington). 
IA32/Windows.
• Operates on object files.

�LEEL, 1999 (University of Singapore). 
IA32/Linux.
• EEL interface on IA32.
• Operates on executables; doesn’t need symbols.
• Limited implementation.
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Some Other Binary Rewriters (con’d)
�Vulcan, 2001 (Microsoft Research). 

{IA32,IA64,MSIL}/Windows.
• Requires managed (Visual Studio) object files. 

Includes some dynamic features.
�BIT, 2003 (University of Arizona). 

IA32/Windows.
• Based on the PLTO ('01) link-time optimizer.

� FIT, 2004 (University of Ghent). Alpha, ARM, 
IA32, IA64, MIPS.
• Requires special compiler to produce annotated 

object files. Based on the DIABLO link-time
optimization engine. 
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Specialize Rewriter Tools
�QPT, 1992 (Univ. of Wisconsin)

• Original rewriting engine for EEL. Operates on 
executables and need symbols.

• Counts execution frequency of basic blocks and 
control flow edges.

� ALTO/PLTO/ILTO, 1991, 2001, 2002 (Univ. 
of Arizona) 
• Link-time code optimizers for Alpha, IA32 and 

IA64: dead code elimination, constant propagation, 
function in-lining, and load/store forwarding. 

� Squeeze, 2002 (Univ. of Arizona and Ghent)
• Link-time code compression, with execution-time 

code expansion.
� DIABLO, 2004 (Univ. of Ghent).

• Link-time optimizer, also used for code 
compression.
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Dynamic Instrumentation: Do It On-the-Fly

Running programs are objects to be easily 
manipulated. Kinds of manipulations might include:

�Instrumentation

�Analysis

�Control
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The Vehicle:The Dyninst API

A machine-independent library for machine level 
code patching.

�Eases the task of building new tools.

�Provides the basic abstractions to patch code on-
the-fly

Truth in advertising: the idea of a clean, portable 
interface was a post-implementation realization.
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Dynamic Instrumentation
A familiar list:
�Does not require recompiling or relinking

• Can instrument without the source code (e.g., 
proprietary libraries).

• Can instrument without linking (relinking is not always 
possible.

• Saves time: compile and link times can be significant in 
real systems.

�Instrument optimized code.
�Instrument stripped code.

• Linux utilities.
• Cyber forensics
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Dynamic Instrumentation (con’d)
�Only instrument what you need, when you need

• No hidden cost of latent instrumentation.
• Enables “one pass” tools.

�Can instrument running programs (such as 
Web or database servers)
• Production systems.
• Embedded systems.
• Systems with complex start-up procedures.
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The Basic Mechanism
Application

Program
Application

Program

Function fooFunction foo

TrampolineTrampoline

Pre-InstrumentationPre-Instrumentation

RelocatedRelocated
InstructionInstruction

Post-InstrumentationPost-Instrumentation
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The Dyninst Interface
�Machine independent representation
�Object-based interface to build Abstract 

Syntax Trees (AST’s)
�Write-once, instrument-many (portable)
�Hides most of the complexity in the API

Easy to build tools: e.g.:
• A function entry/exit tracer: 75 lines of C++.
• An MPI tracer: 250 lines.
• Process hijacker: 700 lines.
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Basic Dyninst Operations
� Code Analysis:

• Basic blocks, functions, modules, variables
• Call graph (inter-procedural CFG)
• Intra-procedural control-flow graph (including natural loop 

detection)
• Operate on stripped binary code, but opportunistically use symbol 

information.
� Program instrumentation
� Program modification

• Both of these use run-time code generation
• Based on machine independent code interfaces

� Process control:
• Attach/create process
• Monitor process status changes
• Callbacks for fork/exec/exit
• Inferior operations: malloc, load module, inferior RPC
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incl ctr

sethi %hi(ctr)

ld [. . .],%o1

add %o1,%o1,1

st %o1,[. . .]

SPARC CodeSPARC Code

Machine Independent Code
Abstract Syntax Trees:

la  $t0,ctr

lw  $t1,($t0)

addi $t1,$t1,1

sw  $t1,($t0)

MIPS CodeMIPS Code

IA32 CodeIA32 Code
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Parsing binary code a bit of a black art. You can get the 80% of the 
functionality in the first 20% of the time.  Getting that last 20% 
will take you years . . .

� Finding key code idioms (function entry, exit, call site).
• Function exit is often the toughest in code with symbols.
• Function entry can be hardest in stripped code.

� Finding space for jump to trampoline
• Long jumps (2-5 words or 5 bytes)
• Short code sequences
• Small functions
• One (or few) byte instructions.
• Code relocation is the key technique (huge topic).

Dynamic Instrumentation Challenges
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�Fighting compiler optimizations (we instrument 
optimized code)
• No explicit stack frame (leaf and intermediate 

functions)
– Identifying parameters and local variables.
– Walking the stack for safety: note that stack walking is an 

important general tool.
• Data in code space (e.g., jump tables)
• De-optimize code on the fly (e.g., tail calls)

Dynamic Instrumentation Challenges
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A()
{
B();
return;

}

B()
{
C();
return;

}

C()
{
i++;
return;

}

Example: Tail-Call Optimization

There is no return point in B to instrument, so 
create one.
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B: save
. . .
call C
restore

C()
{
i++;
return;

}

Example: Tail-Call Optimization
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B: save
. . .
mov %i0,%o0
mov %i1,%o1
mov %i2,%o2
call C
nop
mov %o0,%i0
mov %o1,%i1
mov %o2,%i2
ret
restore

C()
{
i++;
return;

}

Example: Tail-Call De-Optimization
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1999: Kerninst, Dynamic 
Instrumentation in the Kernel

Like Dyninst, but for kernels . . .

�The Kerninst API is (almost) identical to the 
Dyninst API
��InsertsInserts runtime-generated code into kernel
��Dynamic: everything at runtimeDynamic: everything at runtime

• No recompile, reboot, or even pause
��Runs on unmodified commodityRuns on unmodified commodity kernelskernels

• Linux/IA32, Linux/Power, Solaris/SPARC.
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Kerninst
�kerninstd: kernel instrumentation server

• Basic instrumentation primitive: splicing
– Put instrumentation code in a trampoline.trampoline.
– Patch a jump at the instrumentation site.

�kperfmon: performance measurement tool
• Generates measurement instrumentation code
• Communicates with kerninstd to insert that 

code
�Optimization framework
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Vision: Autonomous, Evolving Kernels
�Measure, design improved code, install it

• All at run-time
• All on a commodity OS kernel

�Envision full suite of dynamic optimizationsdynamic optimizations
• Specialization
• Constant propagation
• Inlining

�Also do other development steps at run-time
• Debugging, installation of patches
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Run-time I-Cache Optimization
�Code positioning [Pettis & Hansen 90]

• An example of an evolving kernel algorithm
• Reorder basic blocks to improve I-cache 

performance
– What’s new: at run-time and on a kernel

• Procedure splitting
– Segregate hot vs. cold basic blocks

• Basic block positioning
– Reorder blocks to facilitate straight-lined execution
– Try to make hottest branches untaken
– Requires edge counts
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Code Positioning Steps
Measure root function

• Is there poor I-cache performance?
Measure block counts

• Of the root function and its descendants
– A traversal of the call graph

• Weed out descendants with no “hot” basic 
blocks
– Hot: executed > 5% as often as root function is 

invoked
Emit optimized group of functions
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The Optimized Function Group
Hot basic blocks of ufs_createHot basic blocks of ufs_create

Hot basic blocks of ufs_lockfs_beginHot basic blocks of ufs_lockfs_begin

Hot basic blocks of ufs_lockfs_endHot basic blocks of ufs_lockfs_end

Cold basic blocks of ufs_createCold basic blocks of ufs_create

Cold basic blocks of dnlc_lookupCold basic blocks of dnlc_lookup

Cold basic blocks of ufs_lockfs_beginCold basic blocks of ufs_lockfs_begin

Cold basic blocks of ufs_lockfs_endCold basic blocks of ufs_lockfs_end

Use code replacement on root function to install

Root function
is ufs_create 
Root function
is ufs_create 

Other functions
are the hot subset

of ufs_create’s
call graph

descendants

Other functions
are the hot subset

of ufs_create’s
call graph

descendants

Hot basic blocks of dnlc_lookupHot basic blocks of dnlc_lookup
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Case Study of Code Positioning
�Benchmark: mirror Paradyn papers Web page

• 10 simultaneous connections
• Perform code positioning on tcp_rput_data

– Forwards data from IP to socket (on the hot path)
– A large function (12K+ excluding callees)

• So a good candidate for code positioning

�Macro results
• About 7% end-to-end speedup in completing 

benchmark.
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Results (cont’d)
� 22 functions in the group

• 4260 bytes of hot code, 14624 bytes of cold code
• Most functions had all hot blocks covered in 1 path

�Micro-results (per invocation of tcp_rput_data)
• Virtual time per invocation

– From 6.6 µs to 5.4 µs (reduction of 17.6%)
• I-cache stall time per invocation

– From 2.4 µs to 1.55 µs (reduction of 35%)
• Branch mispredict stall time per invocation

– From 0.38 µs to 0.20 µs (reduction of 47%)
• IPC: from 0.28 to 0.38
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I-Cache Footprint: Before

0 1 2 3 4
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I-Cache Footprint: After

0 1 2 3 4
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Evolving Kernels: The Big Picture
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2004: Instrumentation that Follows Control Flow

�Goal: Finding the causes of bugs and performance 
problems in complex, multi-tier systems.
• E-commerce systems
• Grid computing environments

�Systems are complex and non-transparent
• Multiple components, different vendors

�Anomalies are common in production software
• Intermittent problems
• Environment-specific (“It works for me” syndrome)

�Traditional profilers are not sufficient
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E-commerce systems
� Multi-tier: Clients, Web, DB servers, Business Logic
� Hard to debug: vendors have SWAT teams to fix bugs

• Some companies get paid $1000/hour

Internet

proxy
server

client1

client2

client3

client4

fir
ew

al
l

Load
balancer W2

A2

D2

W1

W3

A3

A1
D1

Common Environments

Web
Server
processes

App
Server
processes

Database
Server
processes
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Common Environments

� Clusters and HPC systems
• Large-scale: failures happen often (MTTF: 30 – 150 hours)
• Complex: processing a Condor job involves 10+ processes

� The Grid: Beyond a single supercomputer
• Decentralized
• Heterogeneous: different schedulers, architectures

� Hard to detect failures, let alone debug them

Job description

submit

schedd

shadow

negotiator

collector

startd

starter

user job

Submitting host Central 
Manager

Execution Host
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Data Collection is Key
�Some basic goals:

• We needs the details.
– Do not discard important facts.
– Collect system-wide data.

• Autonomous
– Rely minimally on human help.

• Low perturbation
– Try to have small affect the execution behavior.
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Vision: Self-Propelled Instrumentation

�An autonomous agent for system exploration
• Follows execution of components (threads)
• Propagates across component boundaries
• Collects run-time data
• Looks for anomalies in the data

Host A Host BProcess P

Process Q

Agent

network

Process R



– 46 – Triangle Lecture© 2006 Barton P. Miller

Steps in Tracing Flows
�Self-propelled instrumentation

• System-wide control-flow tracing
�Separating concurrent flows

• Interleaved executions within a process make 
analysis and diagnosis difficult.

�Automated diagnosis
• Finds nodes or flows that appear anomalous

– We use unsupervised and 1-class learning
• Identify functions that are causing the 

anomaly.



a.out
main

8430:
8431:
8433:
8444:
8446:
8449:
844b:
844c:

push
mov
...
int
mov
xor
pop
ret

foo %ebp
%esp,%ebp

0x80
%ebp,%esp
%eax,%eax
%ebp

call
call
jmp

Patch1
instrument(foo)
foo
0x8405

6cf5:
6d20:
6d27:
6d49:

push
...
call
...
iret

sys_call: %eax

*%eax

call
call
jmp

instrument(%eax)
*%eax
0x6d27

Patch3

instrumenter.so

/dev/instrumenter

ioctl
int
jmp

(INSTRUMENT_SYS)
0x80
0x8446

Patch2

patch
jmp

jmp

jmp

jmp

%ebp
%esp,%ebp

foo 
%ebp,%esp
%ebp

push
mov
...
call
mov
pop
ret

83f0:
83f1:
83f3:
8400:
8405:
8413:
8414:

OS Kernelpatch
jmp

InjectActivatePropagate
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Cross-process Propagation

send(msg)

get peer
inject
send(mark)
send(msg)
jmp back

a.out agent.so

Process P

agent.so a.out

recv(msg)

if at mark
propagate

recv(msg)
jmp back

Process Q

msg mark

recv(portQ)
pidQ=port2pid(portQ)

hijack(pidQ, agent.so)
send(done)

spDaemon

socket

Host BHost A



PDG for One Condor Job



PDG for One Condor Job



Experimental Study: Condor

Job description

Condor_submit

schedd

shadow

Job output

negotiator

collector

startd

starter

user job

Submitting host Central Manager Execution Host
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Job-run-twice Problem
�Fault handling in Condor

• Any component can fail
• Detect the failure
• Restart the component

�Bug in the shadow daemon
• Symptoms: user job ran twice
• Cause: intermittent crash after shadow 

reported successful job completion
• Observed at a customer cite (Fermilab)
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Debugging Approach
�Submit a cluster of several jobs

• Start tracing condor_submit
• Propagate into schedd, shadow, collector, 

negotiator, startd, starter, mail, the user job
�Separate the trace into flows

• Processing each job is a separate flow
�Identify anomalous flow

• Use unsupervised and one-class algorithms
�Find the cause of the anomaly
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Finding Anomalous Flow
Unsupervised scores

0
0.5

1
1.5

2

flow1 flow2 flow3 flow4 flow5

One-class scores

0

0.1

0.2

0.3

0.4

flow1 flow2 flow3 flow4 flow5

�Suspect scores for composite profiles
�Without prior knowledge, Flows 1 and 5 are unusual

• Infrequent but normal activities
• Use prior known-normal traces to filter them out

�Flow 3 is a true anomaly



– 55 – Triangle Lecture© 2006 Barton P. Miller

Finding the Cause
� Computed coverage difference

• 900+ call paths in anomalous run, not in good run
� Eliminated effects of earlier difference

• 37 call paths left
� Ranked the paths

• 14th path by time / 1st by length as called by schedd:
main
→ DaemonCore::Driver
→ DaemonCore::HandleDC_SERVICEWAITPIDS
→ DaemonCore::HandleProcessExit
→ Scheduler::child_exit
→ DaemonCore::GetExceptionString

• Called when shadow terminates with a signal
� Last function called by shadow = failure location
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Vision: Self-Propelled Instrumentation
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Some Closing Thoughts
“The most successful technologies have low usage 

complexity in spite of substantial internal complexity”
Alfred Spector, VP IBM, October 2003 (SOSP)

• The phone system
• The Web
• Automobiles
• Dyninst API ☺

We can  (must!) leverage the great advances of the last 30 
years in compiler technology and binary analysis.

Dynamically adaptive tools are needed to deal with 
dynamically adaptive systems.

Increasing complexity and scale of systems will continue to 
push the limits of our tools.

Need to resolve the conflict between security concerns and 
binary patching.
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How to Get Copies of Dyninst and Kerninst:
Free for research use.
Dyninst release 5.0.1

• Supports Solaris (SPARC), Windows (IA32), AIX 
(Power), Linux (IA32), Linux (IA64), Linux 
(AMD64/EM64T).

Kerninst release 2.1
• Supports Linux (IA32), Linux (Power), Solaris (SPARC).

http://www.paradyn.org
http://www.dyninst.org
paradyn@cs.wisc.edu


