
Reliability Challenges for
Commodity Operating

Systems

Hank Levy
Dept. of Computer Science & Engineering

University of Washington

Two Examples of
Systems Research

1. Research in operating systems design
• Making the world safe from operating

system extensions

2. Internet measurement research
• Understanding the spyware threat

Part 1

Improving the reliability of
commodity operating systems

Joint work with
Mike Swift and Brian Bershad

Outline

• Problem
• Design & Implementation of Nooks
• Evaluation
• Summary

The High Level Picture

• A lot of research effort in the OS community has gone
into performance, rather than reliability.

• The result: operating system crashes are still a huge
problem today
– 5% of Windows systems crash every day

• Device drivers are the biggest cause of crashes
– Drivers cause 85% of Windows XP crashes
– Drivers in Linux are 7 times buggier than the kernel

What is a Device Driver?

• 10s of thousands of device drivers exist
– Over 35K drivers on Win/XP!

• 81 drivers running on this laptop

• Drivers run inside the OS kernel
– A bug in a driver crashes the OS

• Small # of common interfaces

A module that translates high-level I/O
requests to device-specific requests

Kernel

ApplicationApplication

OS Today

Virtual Memory

File Systems

Networking

Scheduling

…

Device Drivers

70% of Linux kernel code!

Driver Reality -- Linux

[Chou et al. 2001]

Why Do Drivers Fail?

• Complex and hard to write
– Must handle asynchronous events

• interrupts
– Must obey kernel programming rules

• Locking, synchronization
– Difficult to test and debug

• timing-related bugs
– Non-reproducible failures

• Often written by inexperienced programmers
• Code often not available to OS vendors

OS Today

Kernel
Driver

ApplicationApplication

Our Goal: OS With Reliability

Kernel
Driver

Application

Driver

Application

What we did

• Prevents the majority of driver-caused
crashes

• Requires no changes to existing drivers
• Requires only minor changes to the OS
• Minimally impacts performance

We designed and built a new Linux kernel
subsystem (“Nooks”) that:

Outline

• Problem
• Design and Implementation of Nooks
• Evaluation
• Summary

Outline

• Problem
• Design and Implementation of Nooks

– Isolation
– Recovery

• Evaluation
• Summary

Nooks
Reliability

Layer

Lightweight
Kernel

Protection
Domains

Kernel

Driver

ApplicationApplication

Shadow
DriversXPC

Nooks System Architecture

Driver Driver

WrappersObject
Table

Outline

• Problem
• Design and Implementation of Nooks

– Isolation
– Recovery

• Evaluation
• Summary

Existing Kernels

Kernel
Driver

ApplicationApplication

Memory Isolation

Kernel
Driver
Stack
Heap

Lightweight Kernel Protection Domains

ApplicationApplication

Control Transfer

Kernel
Driver

ApplicationApplication

Control Transfer

Kernel
Driver

XPC

XPC

eXtension Procedure Call

ApplicationApplication

Transparency

Kernel
Driver

Wrappers

ApplicationApplication

XPC

XPC

Data Access

Kernel
Driver

Object Table

Timer

ApplicationApplication

… …Buffer

Copy-in/
Copy-out

Isolation (recap)

• Isolation
– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Wrappers
– Object Table
– Copy-in/Copy-out of Kernel objects

Outline

• Problem
• Design and Implementation of Nooks

– Isolation
– Recovery

• Evaluation
• Summary

Shadow Drivers

• Shadow Driver Goals:
– Restore driver state after a failure so it can

process requests as if it had never failed
– Conceal the failure from OS and

applications

One shadow driver handles recovery
for an entire class of drivers

writ
e(

…)

write(…)

Shadow Driver Overview

Kernel

Device
Driver

Tap

Shadow
Driver

write(…)

Preparing for Recovery

Kernel

Device
Driver

Shadow
Driver

co
nfi

g(
…)

config(…)

config(…)

config
…

Tap Tap

Device
Driver

Recovering a Failed Driver

Kernel

Shadow
Driver

Device
Driver

Tap
reg

ist
er(

…)

register(…
)

init(…
)

connect
config

config
…

Recovering a Failed Driver

• Summary:
– Garbage collect failed driver
– Reset driver
– Reinitialize driver
– Replay logged requests

Spoofing a Failed Driver

• Shadow driver acts as failed driver
during recovery

Spoofing a Failed Driver

Kernel

Device
Driver

Shadow
Driver

Tap
write(…)

write(…)

return

return

Spoofing a Failed Driver

Shadow acts as driver
– Applications and OS unaware that driver failed
– No device control

General Strategies:
1. Answer request from log
2. Act busy
3. Block caller
4. Queue request
5. Drop request

Outline

• Problem
• Design and Implementation of Nooks
• Evaluation
• Summary

Implementation Complexity

• Changes to existing code
– Kernel: 924 out of 1.1 million lines
– Device drivers: 0 out of 50,000 lines

• New code
– Isolation: 23,000 lines
– Recovery: 3,300 lines

• Each shadow driver is only a few hundred lines
of code

Drivers Tested
Class Drivers
Sound Soundblaster Audigy,

Soundblaster 16, Soundblaster
Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Network Intel Pro/1000 Gigabit Ethernet,
AMD PCnet32, Intel Pro/100
10/100, 3Com 3c59x 10/100,
SMC Etherpower 100

IDE Storage ide-disk, ide-cd

Reliability Test Methodology

Test

Inject bugs

Reboot

Load driver

Nothing Failure Recovery

Isolation Works

0

50

100

150

200

pcnet32
Driver

No Nooks

Nooks119

Isolation Works

0

50

100

150

200

pcnet32
Driver

No Nooks

Nooks119

0

Isolation Works

0

50

100

150

200

pcnet32 e1000
Driver

No Nooks

Nooks119

0

52

Isolation Works

0

50

100

150

200

pcnet32 e1000
Driver

No Nooks

Nooks119

0

52

0

Isolation Works

0

50

100

150

200

pcnet32 e1000 ide-disk
Driver

No Nooks

Nooks119

0

52

0

152

0

Isolation Works

0

50

100

150

200

pcnet32 e1000 ide-disk sb
Driver

No Nooks

Nooks119

0

52

0
10

1

152

0

Recovery Works

0

20

40

60

80

100

Mp3
Player

Audio
Recorder

Remote
Copy

Sniffer Compiler Database

N
um

be
r o

f f
ai

lu
re

s

Driver Failures
Application Failures

Sound Net Storage

0

20

40

60

80

100

Mp3
Player

Audio
Recorder

Network
Send

Network
Receive

Compiler Database

R
el

at
iv

e
Pe

rf
or

m
an

ce
 (

%
)

No Nooks Nooks

Relative Performance

Sound Net Storage

Evaluation: Bottom Line

• Isolation works
– We can avoid crashes in the majority of driver

failures
• Recovery works

– We can keep applications running in the majority
of driver failures

• The cost is acceptable
– In many cases, the performance cost is

acceptable

Summary of Part I

• We took a very targeted and practical approach to
improving OS reliability

• We defined a set of new components and techniques
to create a new OS reliability layer

• We used these components to build isolation and
recovery services

• Our experiments demonstrate that:
– Nooks prevents 99% of the crashes caused by our tests
– Nooks keeps applications running in 98% of tested driver

failures
– There is high leverage in this approach

Break!! Part II

A Crawler-Based Study of
Spyware on the Web

Joint work with Alex Moshchuk,
Tanya Bragin, and Steve Gribble

What is spyware?
• Broad class of malicious and unwanted software
• Steal control of a PC for the benefit of a 3rd party

• Characteristics:
– Installs without user knowledge or consent
– Hijacks computer’s resources or functions
– Collects valuable information and relays to a

3rd party
– Resists detection and uninstallation

You know it when you see it

How do people get spyware?

• Spyware piggybacked on popular software
– Kazaa, eDonkey

• Drive-by downloads
– Web page installs spyware through browser
– With or without user consent

• Trojan downloaders
– Spyware downloads/installs more spyware

Why measure spyware?
• Understand the problem before defending against it
• Many unanswered questions

– What’s the spyware density on the web?
– Where do people get spyware?
– How many spyware variants are out there?
– What kinds of threats does spyware pose?

• New ideas and tools for:
– Detection
– Prevention

Approach

• Large-scale study of spyware:
– Crawl “interesting” portions of the Web
– Download content
– Determine if it is malicious

• Two strategies:
– Executable study

• Find executables with known spyware
– Drive-by download study

• Find Web pages with drive-by downloads

Outline

• Introduction
• Executable file study
• Drive-by download study
• Summary
• Conclusions

Analyzing executables

• Web crawler collects a pool of executabes
• Analyze each in a virtual machine:

– Clone a clean WinXP VM
– Automatically install executable
– Run analysis to see what changed

• Currently, an anti-spyware tool (Ad-Aware)
• Average analysis time – 90 sec. per executable

Executable study results

• Crawled 32 million pages in 9,000 domains

• Downloaded 26,000 executables

• Found spyware in 12.3% of them
– Most installed just one spyware program

• Only 6% installed three or more spyware variants
– Few spyware variants encountered in practice

• 142 unique spyware threats

Main targets
• Visit a site and download a program
• What’s the chance that you got spyware?

0 5 10 15 20 25 30

blacklisted

celebrities

games

wallpapers and screensavers

music and movies

pirate

random

kids

news

% of executables that are infected

Popularity
• A small # of sites have large #of spyware executables:

• A small # of spyware variants are responsible for the majority of
infections:

Types of spyware

• Quantify the kinds of threats posed by spyware
• Consider five spyware functions

– What’s the chance an infected executable contains
each function?

Keylogger 0.05%
Dialer 1.2%

Trojan downloader 12%
Browser hijacker 62%
Adware 88%

Example of a Nasty Executable
• http://aaa1screensavers.com/

– “Let all your worries melt away into this collection of clouds in the
sky – 100% free!”

– http://aaa1screensavers.com/free/clouds.exe
• Installs 11 spyware programs initially

– Includes a trojan downloader; continually installs more spyware
• 10 more within first 20 minutes

• 12 new items on desktop, 3 browser toolbars
• Shows an ad for every 1.5 pages you visit
• CPU usage is constantly 100%
• No uninstallers
• System stops responding in 30 mins

– Restarting doesn’t help
• Unusable system and no screensaver!

Outline

• Introduction
• Executable file study
• Drive-by download study
• Summary
• Conclusions

Finding drive-by downloads

• Evaluate the safety of browsing the Web

• Approach: automatic virtual browsing
– Render pages in a real browser inside a clean VM

• Internet Explorer
• Mozilla Firefox

– Identify malicious pages
• Define triggers for suspicious browsing activity
• Run anti-spyware check only when trigger fires

Event triggers
• Real-time monitoring for non-normal behavior:

– Process creation
– File events

• Example: foo.exe written outside IE folders.
– Registry events

• Example: new auto-start entry for foo.exe

• No false negatives (theoretically)
• 41% false positives:

– Legitimate software installations
– Background noise
– Spyware missed by our anti-spyware tool

More on automatic browsing
• Caveats and tricks

– Restore clean state before navigating to next page
– Speed up virtual time
– Monitor for crashes and freezes

• Deciding what to say to
security prompts:
– “yes”

• Emulate user consent
– “no” (or no prompt)

• Find security exploits

Drive-by download results
• Examined 50,000 pages
• 5.5% carried drive-by downloads

– 1.4% exploited browser vulnerabilities

0 5 10 15 20 25 30 35

pirate

games

music and movies

blacklist

celebrities

wallpapers and screensavers

random

kids

news

% of pages with drive-by downloads

browser exploits
with user consent

(unpatched Internet Explorer, unpatched WinXP)
Types of spyware

Executables
Drive-by

Downloads
Keylogger 0.05% 0%
Dialer 1.2% 0.2%
Trojan

Downloader 12% 50%
Browser hijacker 62% 84%
Adware 88% 75%

• Is drive-by download spyware more
dangerous?

Is Firefox better than IE?

• Repeat drive-by download study with
Mozilla Firefox

• Found 189 (0.4%) pages with
drive-by downloads
– All require user consent
– All are based on Java

• Work in other browsers

• Firefox is not 100% safe
– However, much safer than IE

adult 0
celebrity 33
games 0
kids 0
music 1
news 0
pirate 132
random 0
wallpaper 0
blacklist 23
Total: 189

Summary
• Lots of spyware on the Web

– 1 in 8 programs is infected with spyware
– 1 in 18 Web pages has a spyware drive-by download
– 1 in 70 Web pages exploits browser vulnerabilities

• Most of it is just annoying (adware)
– But a significant fraction poses a big risk

• Spyware companies target specific popular content
– Most piggy-backed spyware in games & celebrity sites
– Most drive-by downloads in pirate sites

• Few spyware variants are encountered in practice

Solution Tidbit 1: Spyproxy

client browser proxy
front end

Squid
web cache

VM worker

spyproxy

Web
URL URL URL

root
page

root
pageSafe!

root
page

Solution Tidbit 2:
Tahoma “Browser OS”

site
site

site

site
sitesite

Bank
Web service

Radio
Web service

Browser OS

Internet

browser instancebrowser instance

Web application 2Web application 1

browser
Web
doc. browser client

side

server
side

Web
doc.

Summary
• We addressed key questions about spyware
• Measured the density of spyware in the Web
• Looked at change in spyware over time (see the paper)
• Built useful tools and infrastructure
• Designed new architectures for safe browsing and spyware

prevention

Thanks!

• For more info:

– Improving the Reliability of Commodity Operating Systems, Proc. of ACM
Symp. On Operating Systems Principles, 2003.

– Recovering Device Drivers, ACM/USENIX Conf. on Operating Systems
Design and Impl., 2004.

– A Crawler-based Study of Spyware in the Web, Network and Distributed
Systems Security Symp., 2006

– A Safety-Oriented Platform for Web Applications, IEEE Symp. On Security
and Privacy, 2006.

• www.cs.washington.edu/homes/levy

