Two Examples of
Systems Research

Reliability Challenges for

1. Research in operating systems design

mmodi ratin
Co Od ty Ope at g » Making the world safe from operating
Systems system extensions
2. Internet measurement research
Hank Levy

. : _ e Understanding the spyware threat
Dept. of Computer Science & Engineering

University of Washington

Part 1 Outline
Improving the reliability of * Problem
commodity operating systems * Design & Implementation of Nooks
» Evaluation
e Summary

Joint work with
Mike Swift and Brian Bershad

The High Level Picture What is a Device Driver?

* A lot of research effort in the OS community has gone

/ con A module that translates high-level 1/0
into performance, rather than reliability.

requests to device-specific requests

* The result: operating system crashes are still a huge « 10s of thousands of device drivers exist
problem today — Over 35K drivers on Win/XP!
— 5% of Windows systems crash every day

: : . 81 drivers running on this laptop
* Device drivers are the biggest cause of crashes

— Drivers cause 85% of Windows XP crashes

— Drivers in Linux are 7 times buggier than the kernel * Drivers run inside the OS kernel

— A bug in a driver crashes the OS

 Small # of common interfaces

OS Today Driver Reality -- Linux

Linux Code Base Growth

2 T T T T T T T
i i H H —+— Total
Application Application Lot _
% ----- e fs
§ 1.5t T2 onet 7
Kernel s
]
Virtual Memory _% 1
i |
File Systems g
Device Drivers -
Networking = 0.5
-—
. =
Sneeniig 70% of Linux kernel code! T bt R el
0 :w e .:-»g-"-'-"-"i'-"-'“""'_ L il *
01/94 01/95 01/96 01/97 01/98 01/99 01/00 01/01

Time [Chou et al. 2001]

Why Do Drivers Fail? OS Today

 Complex and hard to write
— Must handle asynchronous events
* interrupts

— Must obey kernel programming rules
 Locking, synchronization

— Difficult to test and debug
* timing-related bugs
— Non-reproducible failures
» Often written by inexperienced programmers

e Code often not available to OS vendors

Application

Kernel

Our Goal: OS With Reliability What we did

We designed and built a new Linux kernel
Application Application subsystem (“Nooks”) that:

» Prevents the majority of driver-caused
crashes

* Requires no changes to existing drivers
* Requires only minor changes to the OS
« Minimally impacts performance

Driver

Kernel >

Problem

Outline

Design and Implementation of Nooks

Evaluation
Summary

Nooks System Architecture

Application

Application

Kernel

| Lightweight
| Kernel

{| Protection
| Domains

Shadow
Drivers

Nooks
Reliability |
Layer |

Driver

Driver

Driver

Outline

Problem

Design and Implementation of Nooks
— Isolation
— Recovery

Evaluation
Summary

Outline

Problem

Design and Implementation of Nooks
— Isolation
— Recovery

Evaluation
Summary

Existing Kernels

Application

Application

Kernel

Driver

Control Transfer

Application

Application

Kernel

Driver

7

Memory Isolation

Application

Application

Kernel

Driver

Lightweight Kernel Protection Domains

Control Transfer

Application Application
XPC Driver
Kernel /\
\AC
eXtension Procedure Call

Transparency

Application Application
Driver
Kernel /\ " /xb
XPC d \/
Wrappers

|solation (recap)

e |solation

— Lightweight Kernel Protection Domains

— eXtension Procedure Call (XPC)

— Wrappers
— Object Table

— Copy-in/Copy-out of Kernel objects

Data Access

Application Application
Driver
Kernel
Timer |\ "E
Buffer|...|...
Object Table
Outline

Problem

Copy-in/
Copy-out

Design and Implementation of Nooks

— Isolation
— Recovery

Evaluation
Summary

Shadow Drivers

 Shadow Driver Goals:

— Restore driver state after a failure so it can
process requests as if it had never failed

— Conceal the failure from OS and
applications

=» One shadow driver handles recovery
for an entire class of drivers

Preparing for Recovery

Device
Driver

Kernel

Shadow Driver Overview

Device
Driver

Kernel

Device
Driver

Kernel

Recovering a Failed Driver

e Summary:

— Garbage collect failed driver
— Reset driver

— Reinitialize driver

— Replay logged requests

Spoofing a Failed Driver

Kernel

Spoofing a Failed Driver

» Shadow driver acts as failed driver
during recovery

Spoofing a Failed Driver

Shadow acts as driver
— Applications and OS unaware that driver failed
— No device control

General Strategies:
1. Answer request from log
2. Actbusy
3. Block caller
4. Queue request
5. Drop request

Problem

Outline

Design and Implementation of Nooks

Evaluation

Summary

Drivers Tested

Class Drivers

Sound Soundblaster Audigy,
Soundblaster 16, Soundblaster
Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Network Intel Pro/1000 Gigabit Ethernet,

AMD PCnet32, Intel Pro/100
10/100, 3Com 3c59x 10/100,
SMC Etherpower 100

IDE Storage

ide-disk, ide-cd

Implementation Complexity

» Changes to existing code
— Kernel: 924 out of 1.1 million lines
— Device drivers: 0 out of 50,000 lines

 New code
— Isolation:

23,000 lines

— Recovery: 3,300 lines

» Each shadow driver is only a few hundred lines

of code

Reliability Test Methodology

J
Load driver

|

Inject bugs

e

Nothing

Failure

Recovery,

— 7 =

Reboot

200

150

100 -

50 -

200

150

100 -

50 -

Isolation Works

119
pcnet32 |
Driver
Isolation Works
119

52

O I

pcnet32

1000

Driver

Il No Nooks

Il Nooks

Il No Nooks

Il Nooks

200

150

100 -

50

200

150

100 -

50 -

|Isolation Works

119
0
pcnet32 |
Driver
|solation Works
119

52

0 IO

pcnet32 1000
Driver

Il No Nooks

Il Nooks

Il No Nooks

Il Nooks

Number of failures

200

150

100

50

100

@
o

D
o

N
o

N
o

Isolation Works

152
119
52
0 I 0 0

pcnet32 e1000

id
Driver

Recovery Works

Sound

Il No Nooks
Il Nooks
e-disk
Net Storage

B Driver Failures
B Application Failures

Mp3 Audio
Player Recorder

Remote
Copy

Sniffer

Compiler

Database

|Isolation Works

200
Il No Nooks
150 Il Nooks
100 -
50 -
O - T —1
pcnet32 1000 ide-disk
Driver
Relative Performance
I No Nooks M Nooks
100

$ 80
3
8
£ 60
e
g
F: 40
K
& 20

0

Mp3 Audio Network Network Compiler Database
Player Recorder Send Receive

Evaluation: Bottom Line Summary of Part |

e |solation works » We took a very targeted and practical approach to
improving OS reliability

— We can avoid crashes in the majority of driver . .
Jortty » We defined a set of new components and techniques

failures to create a new OS reliability layer
* Recovery works « We used these components to build isolation and
— We can keep applications running in the majority recovery services
of driver failures » Our experiments demonstrate that:

— Nooks prevents 99% of the crashes caused by our tests

. .
The costis acceptable _ — Nooks keeps applications running in 98% of tested driver
— In many cases, the performance cost is failures

acceptable — There is high leverage in this approach

Part Il

A Crawler-Based Study of
Spyware on the Web

Joint work with Alex Moshchuk,
Tanya Bragin, and Steve Gribble

What is spyware? You know it when you see it

o= 5]] ;‘Iil x|
ﬂr

L |[web search

» Broad class of malicious and unwanted software
 Steal control of a PC for the benefit of a 3 party

=F"

E=E Adress | Links

U~ Web Search: /News /Laptop /Watches °/Online tiading
202 vsearch - = Qe0205each - | @ Tooks - | Hisdin [om0 | QY Last Search |
Search for [Type search term(sy bere =] [0 web seareh | 7)1 (][] [[1 bosked |7 iiiai™™
L. Search x . =
» Characteristics: R R

= S EXPLORER

— Installs without user knowledge or consent
— Hijacks computer’s resources or functions

Web Search: |asdl Search

. . Search suggestions: zgs:‘é:;s:
— Young Might Cellular Antenna Dede Between Jurnp Whale
COI IeCtS Valuable Informatlon and relays to a Picture Mokia Cellular Phone Medical Training Captain Stabbin 'é?[jk Card
rd Debt
3 party Weh search results for "asdf*: W
. . . . 1. Information about Asdf T
— AMsdf are the first four lett the h f a GWWERTY Trenm
Resists detection and uninstallation G o oy e shon o b s s oo MR
d |
| [;SDE‘ DV":SHV’:VI\;I WD‘TADT\‘EEH\HB BSS NnONsense rgj\;ta;(e?m
Il > Find asar ST =l
& 7T [[memet

Jtlstart| B C:iwINDOWSsystem3z2. ., | £)5ea

rch Results for as... |] New Car Prices - Microso...

o9 617 PM

How do people get spyware? Why measure spyware?

» Understand the problem before defending against it
* Many unanswered questions
— What's the spyware density on the web?
. Drive-by downloads — Where do people get spyware?
— Web page installs spyware through browser — How many spyware variants are out there?
— With or without user consent — What kinds of threats does spyware pose?
* New ideas and tools for:
— Detection
— Prevention

» Spyware piggybacked on popular software
— Kazaa, eDonkey

» Trojan downloaders
— Spyware downloads/installs more spyware

Approach

Large-scale study of spyware:

— Crawl “interesting” portions of the Web
— Download content

— Determine if it is malicious

Two strategies:
— Executable study
« Find executables with known spyware
— Drive-by download study
» Find Web pages with drive-by downloads

Analyzing executables

Web crawler collects a pool of executabes
Analyze each in a virtual machine:
— Clone a clean WinXP VM
— Automatically install executable
— Run analysis to see what changed
e Currently, an anti-spyware tool (Ad-Aware)
Average analysis time — 90 sec. per executable

Outline

» Executable file study

Executable study results

Crawled 32 million pages in 9,000 domains
Downloaded 26,000 executables

Found spyware in 12.3% of them
— Most installed just one spyware program

» Only 6% installed three or more spyware variants
— Few spyware variants encountered in practice

» 142 unique spyware threats

Main targets

 Visit a site and download a program
* What's the chance that you got spyware?

news

kids

HH

random
pirate [T
music and movies [T
wallpapers and screensavers [NN
I |
|

games

celebrities

blacklisted

10 15 20 25 30

% of executables that are infected

o
a

Types of spyware

» Quantify the kinds of threats posed by spyware

» Consider five spyware functions

— What's the chance an infected executable contains
each function?

Keylogger 0.05%
Dialer 1.2%
Trojan downloader 12%
Browser hijacker 62%
Adware 88%

Popularity

« A small # of sites have large #of spyware executables:

10000

infected
executables

- B

- =2 [=]

=] [=] o

1 10 100 1000
site

» A small # of spyware variants are responsible for the majority of

infections:
w3 1000
E g 100
b
[=] 10
1

1 10 100 1000

spyware program

Example of a Nasty Executable

http://aaalscreensavers.com/

— “Let all your worries melt away into this collection of clouds in the
sky — 100% free!”

— http://aaalscreensavers.com/free/clouds.exe

» Installs 11 spyware programs initially

— Includes a trojan downloader; continually installs more spyware
¢ 10 more within first 20 minutes

* 12 new items on desktop, 3 browser toolbars
» Shows an ad for every 1.5 pages you visit

* CPU usage is constantly 100% FUUWM

* No uninstallers
e System stops responding in 30 mins

— Restarting doesn't help
* Unusable system and no screensaver!

 Drive-by download study

Event triggers

Real-time monitoring for non-normal behavior:

— Process creation
— File events

» Example: foo.exe written outside |E folders.

— Registry events

» Example: new auto-start entry for foo.exe

Outline

No false negatives (theoretically)

41% false positives:

— Legitimate software installations

— Background noise

— Spyware missed by our anti-spyware tool

Finding drive-by downloads

« Evaluate the safety of browsing the Web

» Approach: automatic virtual browsing

— Render pages in a real browser inside a clean VM

* Internet Explorer
* Mozilla Firefox
— Identify malicious pages

 Define triggers for suspicious browsing activity
* Run anti-spyware check only when trigger fires

More on automatic browsing

e Caveats and tricks

— Restore clean state before navigating to next page

— Speed up virtual time

— Monitor for crashes and freezes

» Deciding what to say to
security prompts:

- “yes”

» Emulate user consent
— “no” (or no prompt)

» Find security exploits

Do pou want to install and run “YOU have an OUT OF
D TE browyser which can cause pou to gef infected with
wiruses. spam and spuware. To prevent this press TES
o' signed on an unknovn datedtime and distibuted by

Enteinet Media Inc.

Fublisher authenticity verified by % eriSign Class 3 Code
Signing 2001 CA

Caution; Entemnet Media Inc, asserls that this contentis
safe. You should anly instalAview this content if pou trust
Entemet Media Inc. to make that assertion.

™ Alwaye bust content from Enternet Meadia lne.

Yes [[[oWa | Moelio

Drive—bdy download results

(unpatched Internet Explorer, unpatched WinXP)

» Examined 50,000 pages

» 5.5% carried drive-by downloads
— 1.4% exploited browser vulnerabilities

news
. B browser exploits
kids O with user consent
random [
wallpapers and screensavers [
celebrities T
blacklist I T8
music and movies I
games I
pirate []
(o] 5 10 15 20 25 30 35

%o of pages with drive-by downloads

Is Firefox better than IE?

* Repeat drive-by download study with adult 0
Mozilla Firefox ,
) celebrity 33
* Found 189 (0.4%) pages with
. games 0
drive-by downloads i 5
. 1ds
— All require user consent ,
music
— All are based on Java
) news 0
* Work in other browsers pirate 132
' - random 0
» Firefox is not 100% safe wallpaper | 0
— However, much safer than IE blacklist | 23
Total: 189

Types of spyware

* |s drive-by download spyware more
dangerous?

Drive-by

Executables Downloads

Keylogger 0.05% 0%

Dialer 1.2% 0.2%
Trojan

Downloader 12% 50%

Browser hijacker 62% 84%

Adware 88% 75%

Summary

Lots of spyware on the Web

— 1in 8 programs is infected with spyware

— 1in 18 Web pages has a spyware drive-by download
— 1in 70 Web pages exploits browser vulnerabilities

Most of it is just annoying (adware)
— But a significant fraction poses a big risk

Spyware companies target specific popular content
— Most piggy-backed spyware in games & celebrity sites

— Most drive-by downloads in pirate sites

Few spyware variants are encountered in practice

Solution Tidbit 1: Spyproxy Solution Tidbit 2:
Tahoma “Browser OS”

__________________________________ SPyproxy
i i ~ client
client browser URL i § proxy URL Squid _E&’ side
— rontend fe———| web cache ————
root i root i root
Page | safe! page | page
E VM worker i
E ' server
! side
Web application 1 Web application 2
* We addressed key questions about spyware
» Measured the density of spyware in the Web e For more info:
* Looked at change in spyware over time (see the paper)
* Built useful tools and infrastructure — Improving the Reliability of Commodity Operating Systems, Proc. of ACM
« Designed new architectures for safe browsing and spyware Symp. On Operating Systems Principles, 2003. _
prevention — Recovering Device Drivers, ACM/USENIX Conf. on Operating Systems

Design and Impl., 2004.

— A Crawler-based Study of Spyware in the Web, Network and Distributed
Systems Security Symp., 2006

— A Safety-Oriented Platform for Web Applications, IEEE Symp. On Security
and Privacy, 2006.

» www.cs.washington.edu/homes/levy

