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Two Examples of 
Systems Research

1. Research in operating systems design
• Making the world safe from operating 

system extensions

2. Internet measurement research
• Understanding the spyware threat

Part 1

Improving the reliability of 
commodity operating systems

Joint work with 
Mike Swift and Brian Bershad
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The High Level Picture

• A lot of research effort in the OS community has gone 
into performance, rather than reliability.

• The result:  operating system crashes are still a huge 
problem today
– 5% of Windows systems crash every day

• Device drivers are the biggest cause of crashes
– Drivers cause 85% of Windows XP crashes
– Drivers in Linux are 7 times buggier than the kernel 

What is a Device Driver?

• 10s of thousands of device drivers exist 
– Over 35K drivers on Win/XP!

• 81 drivers running on this laptop

• Drivers run inside the OS kernel
– A bug in a driver crashes the OS

• Small # of common interfaces

A module that translates high-level I/O 
requests to device-specific requests
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70% of Linux kernel code!

Driver Reality -- Linux

[Chou et al. 2001]



Why Do Drivers Fail?

• Complex and hard to write
– Must handle asynchronous events 

• interrupts
– Must obey kernel programming rules 

• Locking, synchronization
– Difficult to test and debug 

• timing-related bugs
– Non-reproducible failures

• Often written by inexperienced programmers
• Code often not available to OS vendors
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Kernel
Driver

Application

Driver

Application

What we did

• Prevents the majority of driver-caused 
crashes

• Requires no changes to existing drivers
• Requires only minor changes to the OS
• Minimally impacts performance

We designed and built a new Linux kernel 
subsystem (“Nooks”) that:
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Existing Kernels
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Transparency
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Isolation (recap)

• Isolation
– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Wrappers
– Object Table
– Copy-in/Copy-out of Kernel objects

Outline

• Problem
• Design and Implementation of Nooks

– Isolation
– Recovery

• Evaluation
• Summary



Shadow Drivers

• Shadow Driver Goals:
– Restore driver state after a failure so it can 

process requests as if it had never failed 
– Conceal the failure from OS and 

applications

One shadow driver handles recovery 
for an entire class of drivers
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Recovering a Failed Driver

• Summary:
– Garbage collect failed driver
– Reset driver
– Reinitialize driver
– Replay logged requests

Spoofing a Failed Driver

• Shadow driver acts as failed driver 
during recovery

Spoofing a Failed Driver
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Spoofing a Failed Driver

Shadow acts as driver
– Applications and OS unaware that driver failed
– No device control

General Strategies:
1. Answer request from log 
2. Act busy
3. Block caller
4. Queue request
5. Drop request
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Implementation Complexity

• Changes to existing code
– Kernel: 924 out of 1.1 million lines
– Device drivers: 0 out of 50,000 lines

• New code
– Isolation: 23,000 lines
– Recovery: 3,300 lines

• Each shadow driver is only a few hundred lines 
of code

Drivers Tested
Class Drivers
Sound Soundblaster Audigy, 

Soundblaster 16, Soundblaster
Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Network Intel Pro/1000 Gigabit Ethernet, 
AMD PCnet32, Intel Pro/100 
10/100, 3Com 3c59x 10/100, 
SMC Etherpower 100

IDE Storage ide-disk, ide-cd

Reliability Test Methodology

Test

Inject bugs

Reboot

Load driver

Nothing Failure Recovery



Isolation Works
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Isolation Works
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Evaluation:  Bottom Line

• Isolation works
– We can avoid crashes in the majority of driver 

failures
• Recovery works

– We can keep applications running in the majority 
of driver failures

• The cost is acceptable
– In many cases, the performance cost is 

acceptable

Summary of Part I

• We took a very targeted and practical approach to 
improving OS reliability

• We defined a set of new components and techniques 
to create a new OS reliability layer

• We used these components to build isolation and 
recovery services

• Our experiments demonstrate that:
– Nooks prevents 99% of the crashes caused by our tests
– Nooks keeps applications running in 98% of tested driver 

failures
– There is high leverage in this approach

Break!! Part II

A Crawler-Based Study of 
Spyware on the Web

Joint work with Alex Moshchuk, 
Tanya Bragin, and Steve Gribble



What is spyware?
• Broad class of malicious and unwanted software
• Steal control of a PC for the benefit of a 3rd party

• Characteristics:
– Installs without user knowledge or consent
– Hijacks computer’s resources or functions
– Collects valuable information and relays to a

3rd party
– Resists detection and uninstallation

You know it when you see it

How do people get spyware?

• Spyware piggybacked on popular software
– Kazaa, eDonkey

• Drive-by downloads
– Web page installs spyware through browser
– With or without user consent

• Trojan downloaders
– Spyware downloads/installs more spyware

Why measure spyware?
• Understand the problem before defending against it
• Many unanswered questions

– What’s the spyware density on the web?
– Where do people get spyware?
– How many spyware variants are out there?
– What kinds of threats does spyware pose?

• New ideas and tools for:
– Detection
– Prevention



Approach

• Large-scale study of spyware:
– Crawl “interesting” portions of the Web
– Download content
– Determine if it is malicious

• Two strategies:
– Executable study

• Find executables with known spyware
– Drive-by download study

• Find Web pages with drive-by downloads
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Analyzing executables

• Web crawler collects a pool of executabes
• Analyze each in a virtual machine:

– Clone a clean WinXP VM
– Automatically install executable
– Run analysis to see what changed

• Currently, an anti-spyware tool (Ad-Aware)
• Average analysis time – 90 sec. per executable

Executable study results

• Crawled 32 million pages in 9,000 domains

• Downloaded 26,000 executables

• Found spyware in 12.3% of them
– Most installed just one spyware program

• Only 6% installed three or more spyware variants
– Few spyware variants encountered in practice

• 142 unique spyware threats



Main targets
• Visit a site and download a program
• What’s the chance that you got spyware?
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Popularity
• A small # of sites have large #of spyware executables:

• A small # of spyware variants are responsible for the majority of 
infections:

Types of spyware

• Quantify the kinds of threats posed by spyware
• Consider five spyware functions

– What’s the chance an infected executable contains 
each function?

Keylogger 0.05%
Dialer 1.2%

Trojan downloader 12%
Browser hijacker 62%
Adware 88%

Example of a Nasty Executable
• http://aaa1screensavers.com/

– “Let all your worries melt away into this collection of clouds in the 
sky – 100% free!”

– http://aaa1screensavers.com/free/clouds.exe
• Installs 11 spyware programs initially

– Includes a trojan downloader; continually installs more spyware
• 10 more within first 20 minutes

• 12 new items on desktop, 3 browser toolbars
• Shows an ad for every 1.5 pages you visit
• CPU usage is constantly 100%
• No uninstallers
• System stops responding in 30 mins

– Restarting doesn’t help
• Unusable system and no screensaver!
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Finding drive-by downloads

• Evaluate the safety of browsing the Web

• Approach: automatic virtual browsing
– Render pages in a real browser inside a clean VM

• Internet Explorer
• Mozilla Firefox

– Identify malicious pages
• Define triggers for suspicious browsing activity
• Run anti-spyware check only when trigger fires

Event triggers
• Real-time monitoring for non-normal behavior:

– Process creation
– File events

• Example: foo.exe written outside IE folders.
– Registry events

• Example: new auto-start entry for foo.exe

• No false negatives (theoretically)
• 41% false positives:

– Legitimate software installations
– Background noise
– Spyware missed by our anti-spyware tool

More on automatic browsing
• Caveats and tricks

– Restore clean state before navigating to next page
– Speed up virtual time
– Monitor for crashes and freezes

• Deciding what to say to 
security prompts:
– “yes”

• Emulate user consent
– “no” (or no prompt)

• Find security exploits



Drive-by download results
• Examined 50,000 pages
• 5.5% carried drive-by downloads

– 1.4% exploited browser vulnerabilities
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browser exploits
with user consent

(unpatched Internet Explorer, unpatched WinXP)
Types of spyware

Executables
Drive-by 

Downloads
Keylogger 0.05% 0%
Dialer 1.2% 0.2%
Trojan 

Downloader 12% 50%
Browser hijacker 62% 84%
Adware 88% 75%

• Is drive-by download spyware more 
dangerous?

Is Firefox better than IE?

• Repeat drive-by download study with 
Mozilla Firefox

• Found 189 (0.4%) pages with 
drive-by downloads
– All require user consent
– All are based on Java

• Work in other browsers

• Firefox is not 100% safe
– However, much safer than IE 

adult 0
celebrity 33
games 0
kids 0
music 1
news 0
pirate 132
random 0
wallpaper 0
blacklist 23
Total: 189

Summary
• Lots of spyware on the Web

– 1 in 8 programs is infected with spyware
– 1 in 18 Web pages has a spyware drive-by download
– 1 in 70 Web pages exploits browser vulnerabilities

• Most of it is just annoying (adware)
– But a significant fraction poses a big risk

• Spyware companies target specific popular content
– Most piggy-backed spyware in games & celebrity sites
– Most drive-by downloads in pirate sites

• Few spyware variants are encountered in practice



Solution Tidbit 1:  Spyproxy
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Solution Tidbit 2:  
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Summary
• We addressed key questions about spyware
• Measured the density of spyware in the Web
• Looked at change in spyware over time (see the paper)
• Built useful tools and infrastructure
• Designed new architectures for safe browsing and spyware

prevention

Thanks!

• For more info:

– Improving the Reliability of Commodity Operating Systems, Proc. of ACM 
Symp. On Operating Systems Principles, 2003.

– Recovering Device Drivers, ACM/USENIX Conf. on Operating Systems 
Design and Impl., 2004.

– A Crawler-based Study of Spyware in the Web,  Network and Distributed 
Systems Security Symp.,  2006

– A Safety-Oriented Platform for Web Applications, IEEE Symp. On Security 
and Privacy, 2006.

• www.cs.washington.edu/homes/levy


