
CheckerCore: Enhancing an FPGA Soft Core to Capture
Worst-Case Execution Times ∗

Jin Ouyang
Dept. of Comp. Sci. & Engr.

The Pennsylvania State
University

University Park, PA 16802
jouyang@cse.psu.edu

Raghuveer Raghavendra
Dept. of Computer Science

North Carolina State
University

Raleigh, NC 27695
r.raghuveer@ncsu.edu

Sibin Mohan
Dept. of Computer Science

University of Illinois at
Urbana-Champaign
Urbana, IL 61801

sibin@cs.uiuc.edu

Tao Zhang
Dept. of Comp. Sci. & Engr.

The Pennsylvania State
University

University Park, PA 16802
tzz104@cse.psu.edu

Yuan Xie
Dept. of Comp. Sci. & Engr.

The Pennsylvania State
University

University Park, PA 16802
yuanxie@cse.psu.edu

Frank Mueller
Dept. of Computer Science

North Carolina State
University

Raleigh, NC 27695
mueller@cs.ncsu.edu

ABSTRACT
Embedded processors have become increasingly complex, re-
sulting in variable execution behavior and reduced timing
predictability. On such processors, safe timing specifica-
tions expressed as bounds on the worst-case execution time
(WCET) are generally too loose due to conservative assump-
tions about complex architectural features, timing anoma-
lies and programmatic complexities. Hence, exploiting the
latest architectures may not be an option for embedded sys-
tems with hard real-time constraints where deadline misses
cannot be tolerated.

This work addresses these shortcomings by contributing
CheckerCore. CheckerCore is a mode-enhanced SPARC
v8 soft core processor synthesized on an FPGA. During reg-
ular execution the core adheres to its original specifications.
But when operating in a special time-checking configura-
tion, CheckerCore executes programs irrespective of inputs
and steers execution along selected control flow paths. Such
execution allows systematic derivation of worst-case execu-
tion time (WCET) bounds. This paper presents the design
and implementation of CheckerCore and illustrates its use
in deriving accurate WCET bounds for a set of embedded
benchmarks. Overall, CheckerCore proposes a realistic
processor core enhancement that encapsulate processor
details without revealing them to users while supporting
safe bounding of WCETs. To the best of our knowledge,
this is the first contribution of a WCET-enhancing microar-
chitectural feature besides full processor encapsulations.

∗This work is partly supported by NSF grants 0905181,
0905365, 0720659, 0720496, 06-49885, grants from Rockwell
Collins and Lockheed Martin, and ONR grant N00014-05-
0739.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-626-7/09/10 ...$10.00.

Categories and Subject Descriptors
C.3 [Computer System Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems

General Terms
Design, Experiment

Keywords
Worst-Case-Execution-Time, WCET, Real-Time, Embed-
ded System, FPGA, SPARC, LEON3, CheckerCore, Shadow
Pipeline

1. INTRODUCTION
A key requirement for safety-critical real-time embedded

systems is that the timing behavior of software components
be predictable. In particular, hard real-time systems have
timing constraints (deadlines) that, if not met, could results
in fallouts that are dangerous to both humans and the en-
vironment. Hence, requirements in safety-critical domains
(e.g. avionics, automobiles, etc.) are being extended to
require safe and verifiable bounds on execution time. Deter-
mining bounds on the worst-case execution time (WCET)
for embedded software is a critically important problem for
next-generation embedded real-time systems.

There exist a variety of techniques to calculate WCET: (a)
static timing analysis techniques [6, 7] rely on compile-time
analysis of task code and derives safe WCET bounds that
are independent of input values; (b) dynamic timing analysis
techniques [4,17] resort to testing and profiling of task code
or stochastic methods to estimate WCET values; and (c)
hybrid techniques [3, 13, 14, 18] use the best of both worlds.
While static techniques provide safe WCET bounds, they
cannot keep pace with architectural innovations (e.g., out-
of-order execution, speculation and dynamic branch predic-
tion) or capture the increasing hardware performance vari-
ation due to the fluctuation of manufacturing parameters
as processor technology scales. Also, static timing analysis
requires detailed simulation of hardware components that is
prone to inaccuracy since processor vendors often do not dis-
close the internal details of their products. Dynamic timing

analysis, on the other hand, has been proved to be unsafe,
in that it can underestimate the WCET values [17], which
can have dangerous consequences.

Hence, hybrid timing analysis techniques provide a con-
venient alternative for obtaining accurate WCET bounds
for contemporary processors. Of these, the CheckerMode
[13,14] approach is particularly interesting since it provides
a mechanism to calculate safe WCET bounds without de-
tailed modeling or even knowledge of the internals of the
processor. This approach uses the processor itself as a model
and obtains information from it, such as execution time for
program paths and“snapshots”of the processor state. While
this is quite a novel approach, it is not easy to determine the
applicability of these techniques since the original work uses
a processor simulator for experiments.

Contributions: This paper contributes a fundamentally
new approach to calculating the WCET for real-time pro-
grams without requiring detailed models of the hardware.
Instead of simulating execution, we promote actual execu-
tion in hardware. This not only renders tedious hardware
modeling unnecessary but also guarantees correct behavior.
It hides architectural complexities and variations in manu-
facturing technology from end users of the processor. This
provides a means to verify bounds on WCET. A further
novelty of the approach is that it is demonstrated and eval-
uated by synthesis of a SPARC v8 soft core processor on an
FPGA platform. This assesses the feasibility of the design
and validates a prototype implementation. To this effect,
we present a hardware/software hybrid platform to gener-
ate WCET estimates of a target processor. Our design is
comprised of two main components:
I. a front-end path/timing analyzer running as a program
on a host machine and
II. a back-end emulation engine with a native target pro-
cessor, enhanced with a so-called CheckerMode, synthesized
onto an FPGA by morphing a soft core into a CheckerCore.

Within CheckerCore, the main function of CheckerMode
is to capture execution cycles and other necessary informa-
tion that represent the worst-case behavior and to commu-
nicate it, as snapshots, to a front-end software component.
The front-end software, in turn, stores and analyzes vari-
ous snapshots and may “merge” snapshots as required. To
enumerate multiple paths, the front-end may also direct the
back-end to re-execute a previously captured snapshot on
the processor in a manner that preserves the worst-case tim-
ing. The final result of the interaction of front- and back-end
is a safe bound of the WCET.

We define a command language, in XML, and an API that
facilitates the exchange of information between the hardware
and software sides. Hence, it is possible to change either
the actual softcore (processor) used at the back-end or the
timing analysis scheme and yet have the overall system work
correctly. We can thus obtain accurate WCET information
for different processor types and timing analysis techniques
using CheckerCore, as long as both conform to the same
API/information exchange mechanism. For this work, we
also developed a “front-end” timing analyzer that drives the
process of requesting and reasoning about information from
CheckerCore.

With the definition of a common interface, manufactur-
ers of embedded processors can implement and provide in-
struments proposed in this paper as long as it conforms to
the interface. Hence, we propose to include CheckerCore,
by default, in the processor. This is the major difference
between our approach and previous simulation-based ap-
proaches. Manufacturers of embedded processors can de-
liver evaluation versions of processors that include Checker-
Cores, either as a part of silicon or as encrypted softcores on
FPGAs. In addition, the proposed CheckerCore implemen-
tation incorporates modular add-ons, such as the shadow
pipeline, synchronization logic, etc. (Section 5), that are
light-weighted (Section 7.3) and can be decoupled. Hence,
manufacturers can even deliver commodity CheckerCores to
users. The main advantage of this approach is that is avoids
the requirement of revealing microarchitectural details while
still providing high fidelity. Other benefits are discussed in
Section 9.

The rest of the paper is organized as follows. Section 2
lists the assumptions for our work. Section 3 provides an
overview of the framework. Section 4 specifies the informa-
tion captured in a snapshot, and how snapshots are merged
to preserve worst-case timing. Section 5 and 6 describe our
back- and front-end designs, respectively. Section 7 discusses
the experimental result and Section 8 reviews related work.
Section 9 summarizes the contributions and further discusses
the benefits of CheckerCore.

2. ASSUMPTIONS
This paper restricts itself to analyzing instruction ex-

ecution in contemporary, high-end embedded processor
pipelines. Other complexities (memory hierarchies, includ-
ing caches, dynamic branch prediction, etc.) exist but are
subject to future research. We assume that tasks execute in
isolation and preemption delays (including cache related pre-
emption delays) are orthogonal to this work. Existing [15]
and future techniques to handle these aspects can be incor-
porated into our framework with minimal changes for tighter
results.

Since we only consider the worst-case effects of instruc-
tions executing through the pipeline, the only timing factor
that needs to be accounted for is the execution time for the
various paths that make up the task. Data-dependent in-
structions may also affect the execution times for each path
and, hence, the worst-case time for the entire task. For such
an instruction, input values are either available at compile
time or the instruction is assumed to execute at its worst-
case timing behavior (largest number of cycles).

Note: The timing analysis process in our framework
amounts to timing sequences of paths coupled with sav-
ing/restoring processor context. It is independent of pro-
gram inputs and is performed as an offline task during
the design and/or validation stages. Cost is secondary as
the timing process may be performed in the background
overnight, i.e., this process does not affect the actual run-
time behavior of the embedded system on deployment. Such
extensive verification, in practice, is typical for initial de-
ployment, for hardware reconfiguration/upgrades or after
extensive code changes (development, upgrades, etc.).

The Native

Pipeline

CheckerCore

Add-ons

ChecCore

Controller

Snapshot Buffer

(on-chip SRAM)

Interface

Front-end

Snapshot Buffer

(host main memory)

: Snapshot

Timing

Analyzer

1

2
3

Figure 1: CheckerCore Framework

3. CHECKERCORE
The principle parts of CheckerCore are a front-end compo-

nent, also referred to as timing analyzer (TA), and the back-
end component, CheckerCore. The TA is responsible for
deriving the WCET of a program. It uses the program dis-
assembly to construct a control flow graph (CFG). The CFG
is then used to drive the back-end to measure the timing of
all paths of the program1. These timing values are com-
bined to find the longest path(s) in the program and then
derive the overall WCET. The back-end is a physical pro-
cessor with support for a CheckerMode whose purpose is to
support checkpointing and restarting executions while pre-
serving timing. In this paper, such a mode was implemented
within CheckerCore, an extension to an FPGA soft core.

Before alternate paths execute, the original processor con-
text are restored to correctly simulate the effect of execution
of alternate paths in isolation from each other. The front-
and back-ends interact through an interface that allows the
former to steer execution while the latter executes selected
code sections along triggered paths in a program’s control
flow. The interface and the TA are discussed in detail in Sec-
tion 6. The interaction between front-end and CheckerCore
is depicted in Figure 1. The TA interacts with CheckerCore
through the CheckerCore controller. It sends commands to
start execution from a particular snapshot, to obtain snap-
shots at various points in the program and to merge snap-
shots. While the theoretical definition of a snapshot is de-
fined in literature [14], a hardware implementation requires
certain mechanisms and exposes tradeoffs. We discuss these
details as well as techniques on how to capture, restore and
merge snapshots in hardware implementations in Sections 4
and 5. The controller subsequently interprets the commands
and drives CheckerCore execution appropriately. Snapshots
and timing measurements are passed back to the TA. The
TA uses the timing information to systematically derive the
overall WCET.

4. PRESERVING TIME IN A CHECKER-
CORE SNAPSHOT

Our theoretical basis for preserving worst-case timing in
snapshots is derived from the literature [13, 14], where a

1A “path” is defined as a sequence of basic blocks that are
contiguous w.r.t. execution flow, delineated by changes in
control flow.

proof of correctness for preserving WCET bounds is given.
In this section, we only briefly reiterate the key ideas be-
fore discussing a number of significant enhancements and
complementary changes in this paper that conform with the
correctness proof.

4.1 Pathological Timing Behavior

Path C

Path D Path E

a2

Path A Path B

a1

Merged

Snapshot

Figure 2: An excerpt of a control flow graph

One simple way to enable rewinding and replaying the
execution of a program is to capture all state information
in the pipeline, e.g., PC, register file, pipeline registers. Al-
though this will guarantee that the pipeline can be restarted
in a functionally consistent state, it does not necessarily pre-
serve the worst-case timing. In addition, only some critical
information is related to worst-case timing and only this lim-
ited amount of pipeline information needs to be preserved.
A simple example in Figure 2 can be used to illustrate on
how to determine what pieces of information are to be cap-
tured in a snapshot. Among the five paths shown in the
figure, path A and path B join at a merge point between
instructions a1 and a2. Suppose that a snapshot is taken
at the merge point and that instruction a1 is included in
the snapshot. If instruction a2 has either a structural de-
pendency or a data dependency on a1, then the issue time
and completion time of a1 will affect the worst-case latency
of path C (and, hence, paths D and E). Depending on a1’s
timing behavior, it is possible that WCETD < WCETE or
WCETD > WCETE . Hence, to preserve a1’s impact on
worst-case timing behavior, we need to record exactly when
a1 begins and completes execution. If the merged snapshot
only contains the functional states, then replaying this snap-
shot, while “functionally correct”, will not be safe in terms
of worst case timing.

4.2 Information Included in a Snapshot
From the example in the previous section, one can ob-

serve that merely capturing the pipeline state as a whole is
insufficient to preserve the worst-case timing. In the rest of
this section, we will discuss the information necessary to pre-
serve the worst case timing. The discussion is focused on the
in-order processor, which serves as our baseline architecture.
While in-order processors presents different requirements for

engineering the snapshot, they still share the same principle
with the OOO processors [13,14].

4.2.1 Snapshot for a Single Execution Context
The general idea of making snapshot is to preserve the

various dependencies, and, hence, the impact of worst-case
timing. The following items are included in the snapshot of
a single execution context. We later explain in Section 4.2.2
that our snapshot also needs to handle multiple execution
contexts.

Execution time up to current snapshot: This is nec-
essary for the timing analyzer to select the longest path.

Processor State: Pipeline state is necessary to put the
processor into a consistent state when replaying a snapshot.
Depending on the microarchitecture, the size of this infor-
mation can vary widely. For the native processor specifically
examined in this work, the relevant pipeline state only in-
cludes the PC, the processor state register, and the return
address.

Dependency information: The data and control de-
pendency information is essential for preserving the timing
impacts of an earlier instruction on a later one. The data
and control dependency information of an in-order proces-
sor is contained in various pipeline registers, which has to
be extracted for a snapshot. Later, in Section 5, we explain
how a shadow pipeline is used to extract and preserve de-
pendencies. For now, we can consider the shadow pipeline
as a small set of registers containing the dependencies, as
shown in Figure 3(a)(b).

Stall cycles in Decode stage and Memory stage:
For in-order processors, only some stages will incur vari-
able stalls. In our native processor, for example, the De-
code stage (where all instructions are issued) and the Mem-
ory stage (where memory instructions are issued) are such
stages. According to the theorem presented in [14], the en-
try/exit times of these stages need to be captured. However,
we observe that capturing only stall cycles suffices to pre-
serve worst-case timing due to strict in-order execution. In
fact, the timing dependencies below imply that structural
dependencies can be preserved in this manner:

IssueTime(insti) = EntryTime(insti) + StallCycles(insti) + 1
(1)

EntryTime(insti+1) = IssueTime(insti) (2)

where insti and insti+1 are two instructions dispatched suc-
cessively to a same pipeline stage (the Decode or Memory
stage in our case). These equations imply that structural
and data dependencies are preserved for in-order processors
by recording only the stall times.

The exact number of stall times to be captured in snapshot
is also microarchitecture-dependent. For now, we loosely
refer to them as “time tags” as shown in Figure 3(c), and
will explain them in detail in Section 5.

Since for this work we do not consider the issue of cache
analysis, values in the register file can be safely treated as
Don’t Cares. Instead, as explained in Section 5, all memory
instructions will be stalled for the duration of the worst-case
memory latency to obtain the pessimistic result. In addition,
most of the contents in pipeline registers are irrelevant to the
dependencies and can also be ignored.

4.2.2 Merging Snapshots of Multiple Execution
Contexts

Another key component of our approach is the ability to
merge multiple snapshots into one single snapshot when mul-
tiple paths join. Merging snapshots can help reduce the
number of paths to enumerate during WCET analysis and
largely save the analysis time. The objective here is to
preserve the worst-case timing when snapshots are merged
[13, 14]. Pathological behavior as illustrated at the begin-
ning of this section can be accounted by always preserving
the impacts of data, control, and structural control depen-
dency on timing. We next show how each type of these
aforementioned dependencies is preserved during merging.

Merging pipeline states: The pipeline state in a snap-
shot, as described previously, is irrelevant to the worst case
timing as long as timing information is correctly merged
as explained below. As a result, we can use an arbitrary
pipeline state in the merged snapshot. However, for conve-
nience, we opt to use the pipeline state with longest worst
execution cycle. This operation is illustrated as the MUX
operation in Figure 3(c).

Merging timing information: The timing information
is two-fold: the execution time up to the current snapshot
and the stall cycles in stages with variable delay. The merge
operation for timing information is to take the maximum
values as a pair of corresponding timing tags in each snap-
shot. This operation is illustrated as the MAX operation in
Figure 3(c).

Merging data/control dependencies: In theory, for
the snapshot of a single execution context, the struc-
tural dependency will automatically preserve the data and
control dependencies. However, when multiple snapshots
are merged, the dependency information contained in the
shadow pipeline registers of all snapshots has to be pre-
served. This can be viewed as a UNION operation as il-
lustrated Figure 3(c). To preserve data dependencies, we
instrument the shadow pipeline stages with extended regis-
ters to hold the additional information contained in a merged
snapshot. Each register has an 8-bit register file address field
and a valid bit (the “L” bit). Since global register 0 does
not impose data dependencies, and the shadow pipeline reg-
isters can hold the data dependencies of one snapshot, we
only need 30 extended registers associated with each shadow
pipeline stage to account for the maximum number of regis-
ters (32 registers in a SPARC V8 register window).

The control dependencies are represented by the control
bits in the shadow pipeline registers. It is straightforward
to see that the UNION operation for these control bits can
simply be reduced to a bit-wise OR of corresponding bits.
The outcome can be directly put into the control bits of the
merged snapshot, and no additional registers are needed.

While replaying a snapshot, the preserved dependencies
contained is enforced by the interaction between the shadow
pipeline and the original pipeline, which will be detailed in
Section 5.

4.3 Summary of Snapshot
The format of snapshot in our design has to account for

cases of both single execution contexts and multiple execu-
tion contexts. Figure 3(c) summarizes the main blocks of
the snapshot and the operations needed to merge two snap-
shots. The theorem presented [14] can be used to prove that
this operation can be carried out recursively to merge an ar-

Destination Register

Address
L C J

7 0
(a)

“C”: Affect Condition Register
“J”: JMPL or RETT instruction

“L”: Long latency instruction writing to a

register in RF (LD/MUL/DIV)

W

Y

“WY”: Write to the Y register

Pipeline State

M
U

X
U

N
IO

N
M

A
X

SNAPSHOT#1

SNAPSHOT#2

Merged

Snapshot

Pipeline State Time Tags

Destination Register

Address
L

7 0

(b)

…...

Pipeline State

Extended Registers

Pipeline State

(c)

Shadow Pipeline Registers

Figure 3: (a) Shadow pipeline register (b) Extended register whose format is actually a partial shadow pipeline register (c)
Merge snapshots

bitrary number of snapshots. The shadow pipeline has the
same depth as the unmodified native pipeline, which has
seven pipeline stages in our case. However, only the first
three stages of the shadow pipeline are associated with ex-
tended field, because in our current microarchitecture only
one bubble may be inserted by a long latency instruction
(Section 5. The timing tags include both the execution time
and the stall time. The next section will provide more de-
tailed information about the microarchitecture and how the
snapshot is mapped to the components in the CheckerCore.

5. HARDWARE IMPLEMENTATION
In this section, we discusses the specifics of the microarchi-

tecture of CheckerCore. The overview of the CheckerCore
architecture is shown in Figure 4, in which a native pro-
cessor (the black dotted box) is enhanced by other Check-
erCore components (other components shown in the fig-
ure). The major CheckerCore components include a shadow
pipeline, a synchronization logic that coordinates the in-
struction flow in both pipelines, a timer block, a centralized
CheckerCore Controller, and a snapshot buffer. The syn-
chronization logic partially overlaps with the timer block, to
drive both pipelines in a way that preserves the worst-case
timing during replaying a snapshot. Most interconnects in
the CheckerCore are neglected in this figure for clarity.

5.1 LEON3 Processor
We enhance the LEON3 processor with the proposed

CheckerCore infrastructure. LEON3 is an open source
SPARC V8 soft-core developed by Gaisler Research [8]. It
features a seven-stage in-order pipeline (the black dotted
box in Figure 4). As discussed previously, control and data
dependencies are resolved in the Decode stage and variable
stalls may be introduced; memory instructions are issued to
the data memory at the Memory stage where they could
potentially stall. In practice, the instruction and data mem-
ories are shared and they both reside in the external DDR2
SDRAM.

Dependencies affect timing in LEON3 as follows. Long
latency instructions (load/mul/div) will typically introduce
one bubble in the pipeline. Hence, only a long latency in-

struction in the Register stage may potentially cause fol-
lowing instructions to stall due to data dependencies. In-
structions that affect branch conditions may finish as late as
at the Memory stage that could potentially introduce three
bubbles if a conditional branch follows. The Y register (used
by mul/div instructions) is also written at the end of the
Memory stage and any instruction that reads this register
may also be stalled for three cycles at the Decode stage.

One interesting feature of LEON3 is that, some instruc-
tions will be translated into two or more short instructions
at the Decode stage. E.g., a load double-word instruction
will be decomposed into two load single-word instructions.
This feature affects how we calculate the stall cycles. The
following sections (5.2, 5.3, 5.4, 5.5, 5.6, and 5.7) provide
details on the enhancements/additions made to the LEON3
to adapt it for CheckerCore functionality.

5.2 Shadow Pipeline
To extract data and control dependencies we instrument

the original LEON3 with a so-called shadow pipeline (the
blue dotted box in Figure 4). As shown, the only logic in the
shadow pipeline is a simplified decoder that extracts the des-
tination register address and several other control bits. As a
result, the format of the shadow pipeline registers is also very
simple (Figure 3(a)). In effect, the shadow pipeline dupli-
cates the data and control dependency information without
disturbing the native pipeline. When a snapshot is taken,
the shadow pipeline can be frozen and the information can
be read out by the CheckerCore controller.

The role of the shadow pipeline is actually two-fold.
During normal execution and the process of taking a
snapshot it is driven by the native pipeline and extracts
dependencies. While replaying a snapshot the shadow
pipeline is loaded with dependency information and passes
this information to the dependency resolution logic of the
native pipeline. Hence, the shadow pipeline is used for both
capturing and preserving the dependencies. In either case,
the shadow pipeline is synchronized with the native pipeline
by the synchronization logic. The shadow pipeline is also
associated with extended registers whose format is shown
in Figure 3(b). The extended registers are used purely for
preserving the additional data dependencies in a merged

Fetch Decode Register Execute Memory Exception WB

A
L
URegister

File

Dependency

Resolution

Logic

D-MEMI-MEM

Simplified

Decode

Logic

Checker Core

Controller

DE Stall Inc

DE Stall Dec

MEM Stall Inc

MEM Stall Dec

Elapse Time

Timer Block

SnapShot Buffer

LEON3

Debug

Unit

JTAG/ETH

Interface

USB

Ethernet

Extended RegistersShadow Pipeline Registers Native Pipeline Registers Time Tags

Sync. Logic

Figure 4: Overview of micro-architecture of LEON3 processor enhanced with Checker Mode

snapshot after taking the UNION operation, as explained
in the previous section. The “L” bit associated with each
destination register address in both the extended as well as
the shadow pipeline registers simply indicates that there is
one long latency instruction with this destination register
at a given stage. This information is used by the native
pipeline to insert bubbles. Only the first three stages of
the shadow pipeline have extended registers since only one
bubble may be inserted into the pipeline due to data depen-
dency, as discussed earlier in this section . During replay,
the extended registers are reloaded by the CheckerCore
controller and run in the same way as the shadow pipeline,
i.e., synchronously with the native pipeline.

5.3 Synchronization Logic
In both the normal execution mode and the Checker-

Mode, the main function of the synchronization logic is to
ensure that both pipelines run at the same pace. However,
the role of this function is slightly different during normal
execution and while replaying a snapshot. During normal
execution or the process of capturing a snapshot (in Check-
erMode) the synchronization logic is driven by the native
pipeline and controls the advance of the shadow pipeline.
However, while replaying a snapshot, the synchronization
logic controls both the native pipeline and the shadow
pipeline. The advancement of both pipelines not only
depends on the natural execution of the native pipeline
but also depends on the worst-case timing information
contained in the snapshot. This is achieved by time tag
registers and the two decrementing timers (DE Stall Dec
and MEM Stall Dec in Figure 4). The time tag registers are
organized as two shift register chains each corresponding to
a decrementing timer. The two decrementing timers will as-
sert corresponding underflow signals if they have counted to
zero. While replaying a snapshot the synchronization logic

will stall the Decode or Memory stage until the DE Stall
Dec or the MEM Stall Dec timer underflows. When either
decrementing timing underflows, the synchronization logic
will reload it with the value in the last time tag register of
the corresponding time tag chain and also shift forward the
time tag chain. The time tag registers are essentially loaded
with the stall cycles from a snapshot before replaying it.

Moreover, as we will see in the next subsection, the MEM
Stall Dec can be loaded with a pre-programed memory la-
tency for each memory instruction during normal execution.
This function is provided for the cases that cache analysis is
not carried out (as in our case). If this function is enabled
the synchronization logic will also stall the memory stage
for a memory instruction during normal execution until the
timer underflows.

5.4 Timer Block
The timer block is essential for capturing timing infor-

mation and preserving the worst case timing when a snap-
shot is taken and when a snapshot is replayed, respectively.
The timer block contains five timers. The two decrementing
timers DE Stall Dec and MEM Stall Dec are used to pre-
serve the worst-case timing during snapshot replay and have
been explained previously. The three incrementing timers,
DE Stall Inc, MEM Stall Inc and Elapse Time are used for
capturing the timing information of a snapshot. Specifi-
cally, when a snapshot is being captured, the DE Stall Inc
and MEM Stall Inc will count the stall cycles of the instruc-
tions passing through the Decode and Memory stages. The
result is read out synchronously by the CheckerCore Con-
troller when an instruction leaves the corresponding stage,
which will then reset the timer to count the stall cycles of
the next instruction. The Elapsed Timer is used to count
the execution cycles between two snapshots. Finally, the two
decrementing timers will load different values during differ-

ent scenarios. While replaying a snapshot, both timers will
load the value from the time tag chain. However, during nor-
mal execution, the DE Stall Dec will always reload 0 (thus it
always underflows) while the MEM Stall Dec may load 0 or
the pre-programmed memory latency depending on whether
cache analysis is available and if a memory instruction is is-
sued. Except for the Elapsed Time timer (32-bit), all other
timers are 8-bit in length.

The calculation of stall cycles deserves some explanation.
As mentioned at the beginning of this section some instruc-
tions will be translated into a number of micro-instructions
at the Decode stage. Our CheckerCore does not time the
stall cycle of each micro-instruction but treats all the micro-
instruction generated by a single instruction as an single
entity. The stall cycles of that instruction is calculated
by subtracting the entry time of the first micro-instruction
into a pipeline stage from the issue time of the last micro-
instruction from that particular pipeline stage. During snap-
shot replay, if the last micro-instruction leaves before the
corresponding decrementing timer completes counting down
then the next instruction will be prevented from entering
the Decode or Memory stage until the timer reaches zero.
Hence, the worst-case stall times of instructions that gener-
ate micro-instructions can be preserved during replay.

5.5 Snapshot Buffer
The snapshot cache serves as an on-chip cache to hold

recently captured snapshots or those that must be restored
shortly. This is to improve the performance of WCET analy-
sis. This buffer is actually managed remotely by the Check-
erCore driver that we describe in further detail in Section
7.

5.6 CheckerCore Controller
The CheckerCore controller drives the execution of the

microarchitectural additions. It implements communication
protocols with the CheckerCore Driver (Section 7) and co-
ordinates the actions of all components in CheckerCore. It
is also capable of steering the pipeline to run on different
paths controlled by the front-end.

5.7 LEON3 Debug Unit with JTAG/Ethernet
Interface

We enhance the LEON3 debug unit with integrated
JTAG/Ethernet Interface. The original LEON3 debug unit
communicates with the JTAG/Ethernet controller via the
same bus that the processor uses to access the main mem-
ory and other devices. To eliminate contention between di-
agnostic messages and regular execution, we remove the de-
bug unit and the JTAG/Ethernet controllers from the bus
and integrate them as a single entity.

5.8 Summary of CheckerCore
With the above enhancements, CheckerCore is capable

of (a) capturing snapshots, (b) replaying snapshots and (c)
steering the execution while still preserving worst-case be-
havior in all cases. During snapshot capture both the native
and the shadow pipeline are drained. This allows the shadow
pipeline to obtain dependency information that is then read
out to the snapshot buffer. The decode and memory stall
cycles of each instruction are also captured in the snapshot
buffer as part of the drain process. Before restoring a snap-
shot a previous snapshot is used to put the processor in a

consistent state. The processor then continues execution un-
til the snapshot that is to be restored is reached. This warms
up the processor state for restoring. The shadow pipeline
is then loaded with dependency information and the time
tag chains are reloaded with the stall cycles of the snap-
shot. After that, the processor continues execution while
the synchronization logic guarantees the preservation of the
worst-case behavior of the snapshot. Steering the execution
along required paths is made possible by the CheckerCore
Controller that provides target PCs and branch conditions
to override the behavior of the native pipeline for jumps and
conditional branches. The target PCs and branch conditions
are provided by the front-end.

The size of a snapshot is determined by the characteristics
of a processor. In our case, a snapshot contains (a) three
extended registers, (b) five shadow pipeline registers, (c) two
time tags for the Decode stage stall (of which at most two
instructions will pass through the Decode stage during snap-
shot capture/replay), (d) five time tags for Memory stage
stall (of which at most five instructions will pass through
the Memory stage during snapshot capture/replay), (e) the
pipeline state, and (f) the elapsed time. The total size of
the snapshot, including padding overhead, amounts to 192
bytes for our current CheckerCore implementation. As a re-
sult, at most five snapshots can be read from and written to
the CheckerCore in a single Ethernet transfer.

6. FRONT-END FUNCTION
The front-end, also referred to as the Timing Analyzer

(TA), constructs CFGs of the executable, issues commands
to the CheckerCore for timing sections of the program and
derives the final WCET for the program. This section gives
an overview of the process of determining the WCET for a
program section and the commands exchanged between the
TA and the CheckerCore during the process.

6.1 Overview of Bounding WCETs

Figure 5: If-else loop.

Prior work in literature described a hybrid method to mea-
sure the WCET of the program [13,14]. We briefly summa-
rize it here, to facilitate understanding, since we implement
a similar scheme in CheckerCore. Consider a loop such as

the one shown in Figure 5 consisting of four basic blocks.
The WCET of the loops is determined as follows. We start
execution from basic block 0 and capture a snapshot (s1)
at the end of basic block 1. Snapshot capture drains the
pipeline, so before we can time the path 1–2, we need to
restore s1. Restoring a snapshot has two components. We
begin execution from a previous point, say basic block 0, so
that the pipeline is full when execution reaches basic block
1. The ’previous point’ is usually the previous snapshot, if
one exists. We then use the timestamps of s1 to enforce
pathological timing behavior. This is also referred to as re-
play of snapshot s1. Now, CheckerCore is steered through
one of the paths, say 1–2, and a snapshot (s2) is taken at
the end of basic block 2. In order to time the other path,
s1 is restored, execution is steered through the other path
1–3 and a snapshot(s3) is taken at the end of basic block 3.
Now, snapshots s2 and s3 are merged to get s4. Finally, to
time one iteration of the loop, s1 is restored. The execution
is steered either through path 1–2 or path 1–3 and snapshot
s4 is replayed. The merge algorithm [14] ensures that the
pathological effects of both paths are retained post merge.
Hence, it is sufficient to re-execute only one of the paths (es-
sentially the path with the longer execution time) for timing
purposes. The execution time of the path is recorded and
relayed to the TA. For timing subsequent iterations of the
loop new snapshots s1, s2, s3 are taken in each iteration af-
ter replaying snapshots (s1 and s4 in this case) taken at the
previous iteration. This procedure is continued until the run
time of the loop reaches a fixed point. After the fixed point
is reached, the run time is extrapolated for the remaining
loop iterations 1.

6.2 Interaction Between the Timing Analyzer
and CheckerCore Controller

Recall that the timing analyzer creates the CFGs and
instructs CheckerCore to measure the run time of various
paths. The CheckerCore controller manages the Checker-
Core (enhanced FPGA soft core). We now present an API
command language that facilitates the interaction between
the two components, the front-end TA and the CheckerCore
Controller that ultimately provides access to the back-end.

According to their different impacts on the back-end, com-
mands can be classified into two groups:
I. Setup Commands: These commands specify the exe-
cution environment. No instructions of the target program
are executed as a result of these commands.
II. Execution Commands: These commands trigger exe-
cution of instructions from the current state of the pipeline.
The state itself is only influenced by setup commands. Re-
sults from the execution are returned to the TA.

6.2.1 Setup Commands
These commands set up the processor state before execut-

ing instructions along a path:
1. put snapshot <Snapshot ID>: This command spec-
ifies a snapshot from which execution needs to be restarted.
A PC, a register window (and other architecture specific
information) included in the snapshot is used to restart exe-

1The fixed-point approach for loop analysis is elaborated in a
different paper that is currently under submission and is not
presented here due to lack of space. Any such technique(s)
can easily be integrated into CheckerCore to obtain more
comprehensive WCET results.

cution from a particular point in the program. The snapshot
is identified by a unique snapshot ID. If the snapshot is not
cached within the CheckerCore cache, the CheckerCore con-
troller obtains the snapshot from the TA which has a larger
buffer that stores all previous snapshots.
2. put timing <Snapshot ID>: This command replays
a snapshot identified by <Snapshot ID>. If the snapshot
is not cached within the CheckerCore cache, it is obtained
from the TA.
3. put PC <Branch PC><Next PC><T/NT>: This
command overrides the outcome of control flow instructions
and thereby forces branches to evaluate such that control
flow is directed along the desired path. It has three argu-
ments: the branch PC, the PC of the target instruction and
the branch outcome — taken/not taken.

These commands can be issued once they are interpreted
in a sequential manner. Multiple “put PC” commands may
have to be issued to steer the CheckerCore through a par-
ticular path in the program. Also, multiple “put timing”
commands can be issued to replay a sequence of snapshots.

6.2.2 Execution Commands
These commands result in execution of instructions

through the pipeline:
a. get snapshot <Snapshot PC>: The command cap-
tures snapshots. It initiates execution from the current
“state” of CheckerCore. The “state” itself is affected by the
commands above. When <Snapshot PC>is fetched from
the instruction stream a snapshot is captured and returned
to the TA. Note that a PC specification does not uniquely
identify a single point during program execution. PCs re-
peat iteratively within loops or when functions are called
at different call sites (or within loops). However, snapshots
have to be uniquely identified with points during program
execution. This is realized by ensuring that all “put PC”
commands are completed before a unique point in execution
is reached and a snapshot is captured. For example, in order
to take a snapshot at the beginning of the third iteration of
a loop the “put PC” command is issued twice before the“get
snapshot” command. The two “put PC”directives steer exe-
cution into the third iteration of the loop before a snapshot
is captured.
b. get timing <PC1><PC2>: This command captures
execution times for program paths. Execution of instruc-
tions is initiated from the current “state”. Subsequently, the
time taken to execute all instructions between the specified
PCs (and hence for that particular path) is returned to the
TA.

7. EXPERIMENTS AND RESULTS

7.1 Experimental Setup
Our baseline architecture is LEON3, a SPARC V8 imple-

mentation from Gaisler Research [8] The baseline architec-
ture is configured to support the full SPARC V8 specifica-
tion, except for co-processor and floating-point instructions.
Both the I-cache and D-cache are also turned off and, as
explained previously, we stall all memory instructions for
a pre-programmed number of cycles. Cache and memory
analysis is orthogonal to our framework and can be added
as part of future work.

The enhancements proposed in Section 5 are applied
to the baseline architecture and implemented on a Xilinx

ML505 FPGA evaluation board, which hosts a Xilinx Vir-
tex 5 FPGA chip (XC5VLX110T). We connect the board to
a computer using the 10/100 Mbps Ethernet physical inter-
face and use the Ethernet debug interface shown in Figure 4
for communication between the front-end and the back-end.

The final hybrid software/hardware platform is assembled
by a so-called “CheckerCore Driver”, analogous to a device
driver. This driver implements the command interface from
Section 6. When analyzing the WCET, the driver accepts
commands from the timing analyzer (TA) that drives the
execution in CheckerMode in the enhanced processor. It
also collects snapshots resulting from CheckerMode execu-
tion and relays them to the TA for further processing. The
interaction between TA and CheckerCore generates the final
timing results presented next.

7.2 WCET Estimation Result
Using the system mentioned in Section 7.1 we derive the

WCET estimation of 6 benchmarks (Table 1): simple and
toy are synthetic benchmarks that we constructed; cnt, bs,
factorial, and fibonacci are from C-Lab benchmark suite.
Benchmark simple has only an if-then-else block. It is
the simplest benchmark that exercises our merge algorithm.
Benchmark toy has a simple if-then-else block and a loop
of 10 iterations within the else block. The CFG of toy is a
bit more complex than simple but requires fewer snapshot
merges than cnt. Benchmark cnt finds the sum of positive
and negative numbers in an array of size 10. Benchmark bs
is a binary-search in an array of size 15 elements. Bench-
mark factorial finds 5! using an iterative loop. Benchmark
fibonacci finds the fibonacci number of 30 using an iterative
loop. To execute each benchmark, we first fast-forward to
the start of the “main” function, and then start the process
of capturing the WCET until the end of that function. Fast-
forwarding is enabled by CheckerCore. A new command to
initiate fast-forwarding is added to the driver besides those
mentioned in Section 6.

Table 1 lists the results (worst execution cycles) for each
benchmark. In our experiments we varied the programmed
memory stall cycles, and for each value we obtain a set of
results to study the impact of memory latency. Rows 2-5
of the table show four sets of results corresponding to the
memory stall cycles of 0, 8, 16, and 32, respectively. This
is carried out for all six benchmarks. We notice that for all
the benchmarks the WCET increases, as expected, with the
increased memory latency.

Hence, we see that CheckerCore is able to calculate the
WCETs for embedded benchmarks without requiring the
use/development of a timing accurate simulator. This also
shows that the proposed architectural enhancements are re-
alistic and impose low overhead. The exact overheads for
CheckerCore are discussed in the next subsection.

Table 1: Worst Case Execution Cycles of Benchmarks

Stall
simple cnt bs factorial fibonacci toy

Cycle
0 173 6610 2029 467 623 2139
8 188 7258 2134 563 886 2434
16 224 8500 2682 722 936 3022
32 309 11484 3874 1066 1336 4189

Table 2: Comparison of Implementation Logic

LUT Flip Flop Slice LUT Block RAM
Available 69120 69120 148
LEON3 12399 11450 10

CheckerCore 14260 12855 11
Overhead 15% 12% 10%

7.3 CheckerCore Overhead
Table 2 shows the comparison of resource utilizations of

the baseline LEON3 and the CheckerCore. CheckerCore
uses a significantly larger number of LUT (Lookup Table)
Flip-Flops However, given the abundant flip-flop resources
on the Virtex 5 FPGA this overhead is negligible. Checker-
Core also uses one more Block RAM (BRAM) to implement
the snapshot buffer.

8. RELATED WORK
CheckerMode [13, 14] is an approach to capture ad-

vanced hardware features transparently while providing
tight WCET bounds. It introduced a hybrid timing anal-
ysis technique of OOO processors including Drain Retired
Merging (DRM) through architectural simulation at the cy-
cle level. Our work differs in that it simplifies the DRM ap-
proach for in-order processors. While this work still relied
on the use of timing accurate simulators, we demonstrate
the feasibility of the approach by integration into an FPGA
soft core.

Bernat et al. [3] used probabilistic approaches to express
execution bounds down to the granularity of basic blocks
that could be composed to form larger program segments
but suffered from considerable timing perturbation. Check-
erCore, on the other hand, can be quite precise in its mea-
surements. The VISA framework [1] suggested architectural
enhancements to gauge progress of execution by sub-task
partitioning and exploit intra-task slack with DVS tech-
niques. The virtual processor in VISA, which both enables
performance improvement and guarantees easy WCET anal-
ysis, is composed of a simple pipeline and a complex core.
In this paper, while performing analysis on paths, cycles
are measured in a special execution mode of the processor
that supports checkpoint/restart and unknown value execu-
tion semantics to reflect proper architectural state and path
coverage. Instead of a VISA-like virtual processor around a
complex core, we demonstrate that CheckerCore is a realis-
tic feature building on modular extensions with much lower
overheads. Hence, our method is more precise than Bernat’s
work while, in contrast to VISA, supporting hybrid timing
analysis on the actual processor core as evidenced in our soft
core enhancements.

Lundqvist et al. [10, 11] use symbolic execution, a tight
integration of path/timing analysis and the concept of an
“unknown” value to account for register values and addresses
that cannot be statically determined to obtain accurate
WCET estimates. However, their work focused on static
timing analysis over the entire program within an architec-
tural simulator. CheckerCore obviates the need for such ac-
curate timing simulators. Whitham [18] presents a combina-
tion of hardware and software techniques to capture WCETs
accurately for complex processors. Instruction scheduling
is carried out by the compiler and relies on custom mi-
crocode executing in the processor. However, this approach

requires a redesign the native pipeline and the entire tool-
chain. In contrast, CheckerCore reuses most of the existing
infrastructure, such as the unmodified compiler and the na-
tive pipeline, and only adds modular components that in-
cur low overheads (Table 2).Some early work has suggested
probabilistic WCET analysis [3, 5, 9, 16] to consider WCET
variations due to implicit factors (such as data dependen-
cies and architectural features) without detailed modeling of
the hardware. However, these approaches cannot guarantee
that the calculated timing values have not been underesti-
mated, a situation that can result in dangerous fallouts such
as missed deadlines.

9. CONCLUSION
Accurate WCET estimation for embedded processors is

critical for hard real-time embedded systems. In this paper,
we propose a hybrid approach that combines both static
and dynamic approaches. Our WCET analysis system is
comprised of a traditional front-end that deconstructs and
analyzes program execution paths and a back-end that is a
native target processor enhanced by a novel “CheckerCore”
synthesized onto an FPGA.

The most important difference between our approach and
prior work is the introduction of CheckerCore, which uses
the real hardware as the timing engine. Beside the advan-
tage of hiding microarchitectural details, it provides three
additional benefits: (i) CheckerCore eliminates the need
for a separate simulator and associated development and
verification costs. Although the design of CheckerCore is
subject to microarchitectural changes, software simulators
share the same problem. Also, the latter requires significant
efforts for verifying consistency that is absent in the for-
mer. (ii) CheckerCore largely improves the speed of anal-
ysis. Although software simulators can trade off accuracy
with performance, for cycle-accurate simulators the speed
is still about several 100K instructions per second [2, 12].
This problem is further aggravated for full-system simula-
tors. In contrast, CheckerCore runs at the same speed as
the native processor that is at least faster by an order of
magnitude (several million instructions per second). (iii)
CheckerCore is unique in that it can analyze processors that
are subject to variations of manufacturing technology but
can still perform analysis on the actual silicon during exe-
cution, which is unprecedented. To illustrate the feasibility
and benefits of CheckerCore, we designed and implemented
a hardware/software hybrid platform for WCET analysis
based on this architecture.A prototype of the CheckerCore
idea is shown to be successfully implemented with a SPARC
V8 processor softcore synthesized on an FPGA platform. In
future work, we intend to focus on the automatic generation
of CheckerCores for a given microarchitecture. This should
help in reducing the time/cost of such enhancements.

10. REFERENCES
[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and

F. Mueller. Enforcing safety of real-time schedules on
contemporary processors using a virtual simple
architecture (VISA). In IEEE Real-Time Systems
Symposium, pages 114–125, Dec. 2004.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: an
infrastructure for computer system modeling.
Computer, 35(2):59–67, Feb 2002.

[3] G. Bernat, A. Colin, and S. Petters. WCET analysis
of probabilistic hard real-time systems. In IEEE
Real-Time Systems Symposium, Dec. 2002.

[4] V. Braberman, M. Felder, and M. Marre. Testing
timing behavior of real-time software. 1997.

[5] S. Edgar and A. Burns. Statistical analysis of WCET
for scheduling. In 22nd IEEE Real-Time Systems
Symposium, pages 215–224, 2001.

[6] R. W. et al. The worst-case execution time problem —
overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems,
7(3):1–53, Apr. 2008.

[7] S. M. et. al. Parascale: Expoliting parametric timing
analysis for real-time schedulers and dynamic voltage
scaling. In IEEE Real-Time Systems Symposium,
pages 233–242, Dec. 2005.

[8] A. Gaisler. Leon3 product sheet. http:
//www.gaisler.com/doc/leon3_product_sheet.pdf,
September 2008.

[9] X. S. Hu, Z. Tao, and E. H. M. Sha. Estimating
probabilistic timing performance for real-time
embedded systems. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 9(6):833–844,
2001. 1063-8210.

[10] T. Lundqvist. A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories. PhD thesis,
Chalmers University, 2002.

[11] T. Lundqvist and P. Stenström. An integrated path
and timing analysis method based on cycle-level
symbolic execution. Real-Time Systems,
17(2/3):183–208, Nov. 1999.

[12] P. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, Feb 2002.

[13] S. Mohan and F. Mueller. Hybrid timing analysis of
modern processor pipelines via hardware/software
interactions. In IEEE Real-Time Embedded Technology
and Applications Symposium, pages 285–294, 2008.

[14] S. Mohan and F. Mueller. Merging state and
preserving timing anomalies in pipelines of high-end
processors. In IEEE Real-Time Systems Symposium,
Dec. 2008.

[15] H. Ramaprasad and F. Mueller. Tightening the
bounds on feasible preemption points. In IEEE
Real-Time Systems Symposium, pages 212–222, Dec.
2006.

[16] G. D. Veciana, M. Jacome, and J.-H. Guo. Assessing
probabilistic timing constraints on system
performance. Design Automation for Embedded
Systems, 5(1):61–81, 2000.

[17] J. Wegener and F. Mueller. A comparison of static
analysis and evolutionary testing for the verification of
timing constraints. Real-Time Systems, 21(3):241–268,
Nov. 2001.

[18] J. Whitham. Real-time Processor Architectures for
Worst Case Execution Time Reduction. PhD thesis,
University of York, May 2008.

