
A Programming Model for Massive Data Parallelism with Data Dependencies∗

Yongpeng Zhang, Frank Mueller, Xiaohui Cui, Thomas Potok
North Carolina State University Oak Ridge National Laboratory

Raleigh, NC 27695-7534 Oak Ridge, TN 37831
yzhang25@ncsu.edu, mueller@cs.ncsu.edu cuix@ornl.gov

Abstract

Accelerating processors can often be more cost and en-
ergy effective for a wide range of data-parallel computing
problems than general-purpose processors. For graphics
processor units (GPUs), this is particularly the case when
program development is aided by environments, such as
NVIDIA’s Compute Unified Device Architecture (CUDA),
which dramatically reduces the gap between domain-
specific architectures and general-purpose programming.
Nonetheless, general-purpose GPU (GPGPU) program-
ming remains subject to several restrictions. Most signifi-
cantly, the separation of host (CPU) and accelerator (GPU)
address spaces requires explicit management of GPU mem-
ory resources, especially for massive data parallelism that
well exceeds the memory capacity of GPUs.

One solution to this problem is to transfer data between
GPU and host memories frequently. In this work, we inves-
tigate another approach. We run massively data-parallel
applications onGPU clusters. We further propose a pro-
gramming model for massive data parallelism with data de-
pendencies for this scenario. Experience from micro bench-
marks and real-world applications shows that our model
provides not only ease of programming but also significant
performance gains.

1 Introduction

Data-parallel coprocessors provide attractive accelerat-
ing platforms for the growing market of parallel comput-
ing. Not only do they usually offer better raw performance
compared to CPU-only programs, but also have better cost-
performance and energy-performance ratios. The wide us-
age of data-parallel coprocessors, such as GPUs in the gen-
eral computing domain, is boosted by the CUDA [3] pro-

∗This work was supported in part by NSF grant CCF-0429653 and a
subcontract from ORNL. The research at ORNL was partially funded by
Lockheed ShareVision research funds and Oak Ridge NationalLaboratory
Seed Money funds.

gramming model by NVIDIA and OpenCL (Open Com-
puting Language) standard [1] by Apple. CUDA, by in-
troducing a few extensions to C as a programming inter-
face to GPUs, lowers the barrier for general application pro-
grammers to program on GPUs. CUDA predominantly runs
on NVIDIA’s GPUs but has also been ported to general-
purpose multicores [15]. OpenCL, an open industry stan-
dard, tries to provide a vendor-independent programming
model for all processors not restricted to GPUs.

Even though it is much easier to program on GPUs than
ever, certain restrictions still apply. For instance, GPUsdo
not support virtual addressing. Thus, the data size they work
on at one time is limited by the size of the on-board physi-
cal memory. As the problem size increases, it is necessary
to explicitly transfer the data in and out of GPU memory
frequently. Delicate balance between the computation and
communication is often required to achieve the best perfor-
mance. This approach is error-prone and may be sensitive
to hardware upgrades because the balance may be broken
with a different generation of hardware supporting more or
less memory space.

With GPGPU programming, clusters of nodes equipped
with coprocessors seem to be a promising solution for in-
creasingly large problems. In homogeneous cluster com-
puting where no accelerators exist in the system, the mes-
sage passing via the Message Passing Interface (MPI)[2] is
the dominant programming model. Therefore, it may be
tempting to incorporate MPI directly to support GPU clus-
ters. However, since MPI is tailored for CPU clusters in the
first place, new problems arise:

• There is no direct link between a coprocessor’s mem-
ory and the network interface. To achieve cross-
node message passing, system memory is required as
a bridge between the coprocessor and the network.
This overhead does not exist in homogeneous systems
and adds extra programming efforts to realize message
passing between memory of different GPUs.

• One of the many lessons learned to obtain good
speedup in single GPU machine is to keep the GPU



as busy as possible. With a new level of memory hi-
erarchy introduced, it becomes even harder to fully
utilize the GPU’s computational resources in clusters
than that in single GPU systems if only one MPI pro-
cess takes full control of one GPU.

To solve these problems, we propose a framework that is
layered on top of MPI to supply both ease of programming
and performance. Its key characteristics are:

• It provides the means to spawn a flexible number of
threads for a parallel task without being restricted to
the number of nodes in the system. Multiple threads
can run in the same MPI process and share one GPU
card to increase the utilization rate. In applications
where the communication vs. computation ratio is rel-
atively high, this is an important optimization option.

• A distributed object allocation interface is introduced
to merge CUDA memory management and explicit
message passing commands. This is based on the ob-
servation that the management of the on-board phys-
ical memory consumes a large amount of coding ef-
fort for the programmer. The need to exchange data
through MPI even complicates matters further. Our in-
terface helps programmers view the application from
a data-centric’s perspective. From the performance
point of view, the underlying run-time system can de-
tect data sharing within the same GPU. Therefore, net-
work pressure is reduced, which is becoming more im-
portant because of the computation time reductions as
coprocessors increase in speed.

• An interface for advanced users to influence thread
scheduling in clusters is provided, motivated by the
fact that the mapping of multiple threads to physical
nodes affects the performance depending on the appli-
cation’s communication patterns.

2 Programming Model

The computational platform we consider here is a cluster
of closely coupled machines connected via a fast network
link (Figure 1). There are three levels of parallelisms. At the
top level are the MPI processes, the number of which is the
determined by the availability of resources, e.g., the number
of physical nodes in the cluster. At the middle layer are the
CPU threads that run in each MPI process. They share one
GPU card and launch GPU kernels independently. At the
bottom level are the GPU kernels consisting of blocks of
many light-weighted threads.

The user writes MPI-like programs that will later be au-
tomatically pre-processed into native MPI programs run-
ning on clusters. A program is composed of serial parts

and data-parallel parts. For the serial part of the program,
every node executes the same code path. The data parallel
part is indicated by specifying the function name, dimen-
sion and arguments. Implicit barriers exist at the end of each
data-parallel part. From now on, we will refer to the func-
tions that are executed in the parallel region askernels. Our
model does not have the constraint of having less (equal)
number of tasks than (to) the number of nodes available in
cluster, as in the MPI program. In fact, it may be advanta-
geous to spawn more tasks than the cluster size to achieve
better load balancing.

2.1 Distributed Object Interface

Even though tasks are running on different nodes in the
data-parallel part of the program, they can still communi-
cate with each other through aDistributed Object Interface.
Every data object that exists and shares data across the com-
putational nodes can be registered in the system as adis-
tributed object. Currently, the model supports 1-D, 2-D and
3-D objects of any type. The interface defines the following
operations:

• RegDObj(name, [dimension], [unitbytesize]): The
declaration of adistributed object. This method is
called in the serial part of the program. Only the name
of thedistributed objectis needed at declaration time.
The provided object name will be used to refer to this
object in otherdistributed object interfaces. The di-
mension and unit size of this object are optional at the
declaration point to provide the maximal flexibility.

• pair<void *, devicePtr *> GetDObj(name, range,
unitbytesize): This method is called in the task of the
data-parallel part and returns two pointers: one to the
system memory, the other to the GPU’s device mem-
ory. A task can obtain a copy of a memory slot of the
distributed object. It is transparent to the programmer
where this data originated from. The existence of this
copy on this node isnotmade public to the other node
at this point. Both blocking and non-blocking versions
of this method are provided to give the user the flexi-
bility to overlap computation and communication.

• ModifiedDObj(name, range, unitbytesize): This
method is called in the task of the data-parallel part.
The task claims to exclusively own the copy of a mem-
ory slot. The result of this operation will free spaces
of all other copies in other nodes that it had previously
obtained a copy of. It also implies that later requests to
the same memory slot will refresh data from this node.



...

...

... ... ... ...

MPI Process

CPU threads

GPU

...

...

...

... ... ... ...

MPI Process

CPU threads

GPU

...

...

...

... ... ... ...

MPI Process

CPU threads

GPU

...

...
light−weighted threads light−weighted threads light−weighted threads

Figure 1. Execution Model

2.2 Case Study – 2D Stencil

We take a 5-point 2D stencil computation as an example
to explain the usage of thedistributed object interface. The
2D stencil computation is an iterative algorithm that, given
data with a 2D dimensional layout, repeatedly updates the
data by weighting neighboring data from the previous iter-
ation with constant weighting factors:

Dk+1

i,j = w1 ∗ Dk
i−1,j + w2 ∗ Dk

i+1,j + w3 ∗ Dk
i,j−1 +

w4 ∗ Dk
i,j+1 + w5 ∗ Dk

i,j

whereDk
i,j stands for the data at position (i,j) at iteration k

andw∗ are constant weighting parameters.
The pseudo-code for the main entry is shown below.

Given a 2D dimension ofN × N as the total problem size
andG × G as the granularity of the parallel tasks (line 6),
we can divide the entire job intoS ×S tasks, each of which
operates on a tile of the 2D plane. The data that represents
the plane is declared as adistributed objectin the system.
To avoid synchronization issues within the kernel, we create
two objects (“Plane1” and “Plane2”) representing the same
plane, We then switch the input and the output for consecu-
tive iterations (line 11, 12).

To specify that the boundaries of this tile will be fetched
by neighbor tiles, the four margins are explicitly registered.
For similar reasons, the region buffers are registered twice
(line 14-15). If this step was skipped, the neighbor task

could just request a memory slot of the “Plane” object di-
rectly and the run-time system could provide the requested
region on-the-fly. But the explicit boundary registrations
are to reduce the run-time overhead by conserving memory
usage. We can also see thatS is used to specify the kernel
dimension (line 19).

Listing 1. 2D Stencil Main Entry Pseudo-code

1int main(int argc,char ∗∗argv)
2{
3// Serial region
4// dimension of the plane is N by N
5// plane is split by G by G tiles
6int N, G;
7

8// No. of tasks in each dimension
9int S = (N−1)/G + 1;
10

11RegDData(”Plane1”, Dim(N, N, 1));
12RegDData(”Plane2”, Dim(N, N, 1));
13

14RegDData(”North1”, Dim(S, S, 1));
15RegDData(”North2”, Dim(S, S, 1));
16// similar code for South, East and West
17...
18for (int i = 0; i != MAX ITER; i++)
19LaunchKernel(Dim(S,S,1), N, G, i);// parallel region
20}



The stencil iteration is done in the following data-parallel
function that is executed in parallel in the cluster. This func-
tion has a built-in variable called “gridIdx” of typeDim to
facilitate the specification of the memory slot of the data this
task is working on (line 3-6). Figure 2 gives a close-up view
of the tile that a task at the gridIdx of (x, y, 1) operates on.
This task will update data on the “Plane” object in the range
from (x∗G, y∗G, 1) to ((x+1)∗G, (y+1)∗G, 1); and four
boundary objects in the range from(x, y, 1) to (x, y, 1), in-
clusively. It will also need to fetch the data from the neigh-
boring four tiles with shifted ranges.

Listing 2. 2D Stencil Thread Pseudo-code

1void Stencil2D(...)
2{
3int globalx = gridIdx.x∗ G;
4int globaly = gridIdx.y∗ G;
5int sizex = min((gridIdx.x + 1)∗ G , N )− globalx;
6int sizey = min((gridIdx.y + 1)∗ G , N )− globaly;
7

8// Determins which buffers are inputs or outputs:
9// buffer 1s are the inputs, buffer 2s are the outputs
10<h inplane, dinplane> = GetDObj(”Plane1”,
11(gridIdx.x∗G:gridIdx.x∗G+sizex−1,
12gridIdx.y∗G:gridIdx.y∗G+sizey−1, 0:0),
13sizeof(float));
14<h outplane, doutplane> = GetDObj(”Plane2”,
15(gridIdx.x∗G:gridIdx.x∗G+sizex−1,
16gridIdx.y∗G:gridIdx.y∗G+sizey−1, 0:0),
17sizeof(float));
18

19// margin conditions are omitted here
20<h mynorth, dmynorth> = GetDObj(”North1”,
21(gridIdx.x:gridIdx.x,
22gridIdx.y:gridIdx.y, 0:0),sizeof(float)∗sizey);
23//...similar code for mywest, mysouth and myeast

W
es

t(
x,

y,
1)

E
as

t(
x,

y,
1)

South(x,y,1)

N

South(x−1, y, 0)

W
es

t(
x,

y+
1,

0)

E
as

t(
x,

y−
1,

0)

          y*G:(y+1)*G,
Plane(x*G:(x+1)*G,

          0 : 0)

North(x+1, y, 0)

North(x, y, 1)

X

Y

N
GGG

G

G

G

(x,y)

Figure 2. 2D Stencil Distributed Data View

24

25//get neighbor margins as input
26//(margin conditions are omitted)
27<h north, nnorth> = GetDObj(”South1”,
28(gridIdx.x−1:gridIdx.x−1,
29gridIdx.y:gridIdx.y, 0:0),sizeof(float)∗sizey);
30//... similar code for west, south and east
31

32// the stencil core function
33stencil core(doutplane, houtplane, dinplane,
34h inplane, dnorth, ..., sizex, sizey);
35

36//programmer needs to update the four margins explicitly
37updatemargins(<d outplane, houtplane>,
38<d mynorth, hmynorth>, ..., sizex, sizey);
39

40// claims exclusive ownership of the output object
41ModifiedDObj(<h outplane, doutplane>, ”Plane2”,
42(gridIdx.x∗G : gridIdx.x∗G+sizex−1,
43gridIdx.y∗G:gridIdx.y∗G+sizey−1, 0:0),
44sizeof(float));
45

46ModifiedDObj(d mynorth, hmynorth, ”North2”,
47(gridIdx.x:gridIdx.x, gridIdx.y:gridIdx.y, 0:0),
48sizeof(float)∗sizey);
49//... similar code for mywest, myeast and mysouth
50}

2.3 Global Synchronization

Our programming model provides a global barrier syn-
chronization syntax syncthreads() for parallel tasks run-
ning in the same parallel region. Tasks will block on this
function until all other tasks have reached this function. We
could add this barrier in theStencil2D() function above
just before the stencil core function (around line 31) to re-
move the double buffers for alldistributed objectsin the ap-
plication. However, the message passing overhead involved
with the synchronization would be significantly larger with-
out double buffering for this stencil example.

3 Implementation

This section describes the implementation of the pro-
gramming model and its supporting run-time system. The
final executable is a native MPI program. We assume the
number of physical nodes is equivalent to the number of
processes, i.e., each node has one MPI process during the
run-time.



3.1 The Foundations

The parallel execution uses fork/join style parallelism.
One of the processes is chosen as a master process(usually
but not necessarily rank 0) while other processes are de-
fined as workers. For serial regions, master and workers
execute the same serial code. Serial code can only involve
global variables shared in all processes and does not have
branches that affect the parallel region path of each process.
For parallel regions of the program, the master launches a
scheduler to assign tasks to workers according to the paral-
lel region’s task dimension. The number of tasks is purely
application dependent and is specified by the kernel dimen-
sion shown in line 19 of Listing 1. All communication be-
tween master and workers is performed by MPI messages.
Workers keep receiving message commands from the mas-
ter to spawn a new thread for each task. After a task has
completed, the associate worker informs the master. After
all tasks are finished, the master sendsJOINmessages to all
workers to allow them to return to the serial region of the
program(implicit global barrier). This parallel execution is
illustrated in Figure 3.

Serial Region

Fork

New TaskNew Task Task Done

Task DoneTask Done
Join

Join
Join

Serial Region

Parallel Region

threads

master

worker

worker

worker

New Task
New Task

Task Done

Join

Figure 3. Parallel Execution between Master
and Workers

...(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

...

Figure 4. Data Locality Aware Scheduling

The new task command in the message from master to
workers contains the task id and task dimension of the ker-
nel. The kernel functions can use these parameters to select
different regions of a shared data object, as is done in the
stencil2D() function above (line 3-6).

3.2 Distributed Object

To support thedistributed object interface, the master
functions as a centralized database that keeps track of all
regions of thedistributed objectsclaimed by all previous
ModifiedDObj()calls by the worker. If there is already
an overlapping entry registered with the master when it re-
ceives aModifiedDObj()request, it sends invalidation mes-
sages to the previous owner process to free the portion of
data.

All workers also keep a local table that stores all exclu-
sive copies ofdistributed objectsit exclusively claims the
ownership of. There are three cases when a task (taski)
request a piece ofdistributed objectby GetDObj():

1. The local table contains this entry. Then the run-time
system just returns the pointer. No network messages
are needed.

2. The local table does not contain this entry. The run-
time system sends a request message to master. The
master searches its global table. If no previous regis-
trations are found, it will send aINIT message to the
source indicating that the source can go ahead allocate
the memory locally. No other node has the fresh data.
Please note here that neither the master nor the worker
will add the entry in their tables yet. The insertion
should only be done when a worker issues aModified-
DObj() call. Two network messages are required in
this case.

3. If the master has found a match in another worker(j),
it will send a message back to workeri pointing to
j. Worker i will then send another message toj di-
rectly request the data. The requested data will then
be directly transferred from workerj to workeri. Four
control messages and one data payload message are re-
quired in this case.

4. To reduce the number of control messages for non-
local data fetching, a cache of source records is pre-
served in each worker. At the beginning of step 2, a
worker can first consult the cache to see if previous
requests have been replied. If that is the case, it can
directly request the data from the source without con-
sulting the master.



3.3 Scheduling with Data Locality

In programs running in clusters connected by a network,
data locality is far more important than for those running
on single node. This is because the network transfer speed
is usually orders of magnitude slower than that through the
internal memory bus. Therefore, performance is very sensi-
tive to the run-time task mapping to the computation node.
Take the 2D stencil as an example (Figure 4). Suppose
there are three workers. An inefficient schedule would be
to assign blocks to workers in a round-robin fashion, i.e.,
block(0,0) to worker1, block(0,1) to worker2 and block(0,2)
to worker3. In this case, the exchange of data is maximized
over the network. A better way of scheduling is to assign
neighboring blocks (0,0) and (0,1) to worker1, blocks (0,2)
and (0,3) to worker2, and blocks (1,0) and (1,1) to worker3.
This way, some of the messages can be converted into inter-
nal memory copies.

We believe scheduling should be part of the support-
ing run-time system, too. But we also insist that an inter-
face should be provided to advanced programmer to influ-
ence the scheduling decisions because the best scheduling
may be application dependent. Our solution is to allow the
user to specify the data requirement for each thread using a
pragma-style specification. This specification will be turned
into functions that are executed by the master scheduler to
find the best mappings. The following criteria (in decreas-
ing order of priority) are:

• Cache: for repeated calls to the same kernel, the previ-
ous mapping is applied (timing locality);

• Load balancing: workers will receive roughly the same
number of tasks;

• Locality sensitivity: For a task that requires a certain
data region as input, the worker with the larger inter-
section of data is chosen to execute the task;

• Initial decision: in the initial state, scheduler will tem-
porarily store the data location information for tasks
that have been scheduled and use this information to
assign subsequent tasks based on the intersection met-
ric.

4 Tool Chain and Software Stack

The software stack is composed of several layers as illus-
trated in Figure 5. MPI, the boost thread library and CUDA
are used to support the three top-down levels of parallelism,
respectively. Our framework combines the above three li-
braries to provide completely transparent multi-threading
inside MPI process. The MPI and CUDA interfaces are par-
tially exposed to the application layer. MPI calls can stillbe

used in the serial parts of the code and users are required
to launch GPU kernels adhering to the CUDA driver API.
Though advanced users can directly work on the framework
API, an optional pre-processor is provided to reduce the
lines of code.

It is worth noting that this framework can adjust to clus-
ters without any CUDA-enabled GPUs. In this case, this
framework transforms to a multi-threaded MPI program-
ming model. The device memory pointers in theDistributed
Object Interfaceare simply nullified. In that case, host
memory pointers are directly passed to high-level language
functions that replace the CUDA kernels.

Figure 6 shows the tool chain of the framework. The
boost library needs to be compiled with the MPI enabled
option. With code auto-generation, the pre-processor con-
verts the spec-like user inputs to C++ codes, which are fur-
ther compiled by the MPI compiler into MPI executable file.
The final execution is performed in a typical MPI scenario.

Application

boost::thread libMPI CUDA

Driver API
Framework

Preprocessor

Figure 5. Software Stack

Main.ccUserFunction.cc
UserFunction.h

MPI Executable

WorkerAuto.cpp
MasterAuto.cpp

Main.cppUserFunction.cu/cpp
UserFunction.h

pre−processor

nvcc/mpicxx

Library Source Files

pre−processor

mpicxxmpicxx

Figure 6. Tool Chain

5 Experimental Results

We have prototyped and profiled the run-time system in
a cluster of up to sixteen nodes, each of which contains



a Geforce GTX 280 graphic card and a dual-core AMD
Athlon 2 GHz CPU with 2GB of memory. For comparison
purposes, execution time is measured for both the function-
ally equivalent GPU and CPU test benchmarks.

5.1 2D Stencil

The 2D stencil code performs calculations in manner re-
flecting computations of common particle codes in physics
where a local value depends on that of their immediate
neighbors in a multi-dimensional space represented as ma-
trices. Figure 5.1 shows the execution time with various
configurations over different problem sizesN in a 5-point
stencil pattern. The single-CPU single-thread curve fol-
lows theN2 trend (onlyN ≤ 10000 are shown). Adding
both CPU and GPU resources prove to be beneficial for
N ≥ 4000. It can be seen that the more computational
resources we have in the system, the larger problem sizes
we can handle. Overall, the GPU version provides a 6X
speedup over the CPU version with the same number of
nodes.

In Figure 8, we take a closer look at the communication
and computation time ratios for multi-GPU and multi-CPU
cases. All curves start from very high ratio forN < 5000.
Since the communication time is roughly the same for both
the CPU and GPU versions under the same number of
nodes, the ratio between the GPU curve and the CPU curve
implies the pure kernel acceleration rate, which is about
10X for largerNs.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1000 2000 4000 8000 10000120001600020000240002800030000

E
xe

cu
tio

n 
T

im
e 

(m
s)

2D Stencil Dimension

1 CPU
4 GPUs
4 CPUs

10 CPUs
10 GPUs

Figure 7. 2D Stencil Execution Time

5.2 Document Clustering

We assess this programming model using a real-world
application, namely a massive document clustering prob-
lem. The complete algorithm is based on previous research
performed at ORNL ([13, 4]) and consists of two phases:

 0.01

 0.1

 1

 10

 100

 0  5000  10000  15000  20000  25000  30000

C
om

m
/C

om
p 

R
at

io
s

2D Stencil Dimension

9 GPUs
9 CPUs
4 GPUs
4 CPUs

Figure 8. 2D Stencil Comm/Comp Ratios

 0

 20000

 40000

 60000

 80000

 100000

 120000

150000 300000 450000 600000 750000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Document Population

10 GPUs
10 CPUs

Figure 9. Tf-Icf Calculation

the Tf-Icf step and flocking-based document clustering sim-
ulation.

In the Tf-Icf step, the input is a corpus of plain-text doc-
uments. The goal is to reduce each document to a vector
of unique terms associated with Tf-Icf values. This vector
represents the characteristics of this document and can be
used to calculate similarities of two documents given their
term vectors.

The clustering simulation step maps one document as a
moving point and simulates its positions in a bounded 2D
plane. A similarity metric between neighboring documents
is then calculated on-the-fly to determine each point’s be-
havior (velocity) in each iteration. With enough computa-
tional nodes in the cluster, we are able to store all document
term vectors in memory and transfer them as necessary with
message passing.

The execution time in ten GPUs and CPUs for the Tf-
Icf step is shown in Figure 9. The GPU version achieves
approximately 30X speedup over the CPU version and has



made the disk I/O the predominant bottleneck in this step.
A similar speedup is observed in the document clustering
step.

6 Related Work

A myriad of work with respectable results has been
reported in stand-alone GPU systems [9, 12, 14, 5, 10].
As more and more applications report speedups by data-
parallel co-processing, the community is beginning to in-
vestigate the potential of massively data-intensive appli-
cations, such as text mining, clustering and classifications
[18, 8, 17]. In most cases, the on-board physical memory is
one of the major constraints to achieve scalability for indus-
trial usage. In contrast, few experiments on GPU clusters
can be found in literature. Two ad-hoc approaches includ-
ing acceleration of scientific computations in GPU clusters
[7, 6].

Recent work [16] proposes an MPI-like message passing
framework,DCGN, for data-parallel architectures. This en-
ables programmers to initiate message passing from inside
the GPU kernel. The data synchronization for communica-
tion messages between device memory and system memory
is transparently performed in the framework with only little
performance overhead. In contrasts, our work focuses on
a coarser grained level in the sense that message passing is
performed outside the GPU kernels.

Our programming model employs a hybrid paralleliza-
tion model at the MPI process level, where parallel execu-
tions are forked and joined implicitly. This approach differs
from previous work [11] that compiles existing OpenMP
programs to CUDA kernel codes running in single node.

7 Conclusion

In this paper, we presented a novel programming model
for massive data parallelism with data dependencies, par-
ticularly aiming to provide both performance and ease of
programming for the emerging GPGPU clusters. ADis-
tributed Object Interfacewas proposed to force program-
mers to think and design algorithms in a data-centric man-
ner. Tedious and error-prone issues, such as thread map-
ping, scheduling and device memory management, are com-
pletely handled by the underling framework to help pro-
grammers concentrate on application-specific design issues.
Experimental results from a micro benchmark and a real-
world application have shown dramatic speedups over tra-
ditional CPU clusters, ranging from 10X to over 30X. This
demonstrates the strong performance potential of utilizing
GPU clusters for large-scale applications.

References

[1] http://www.khronos.org/opencl/.
[2] http://www.mcs.anl.gov/research/projects/mpi/.
[3] http://www.nvidia.com/object/cudahome.html.
[4] X. Cui, J. Gao, and T. E. Potok. A flocking based algorithm

for document clustering analysis.J. Syst. Archit., 52(8):505–
515, 2006.

[5] M. Curry, L. Ward, T. Skjellum, and R. Brightwell. Acceler-
ating reed-solomon coding in raid systems with gpus. InIn-
ternational Parallel and Distributed Processing Symposium,
Apr. 2008.

[6] E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, and
V. Pande. N-body simulation on GPUs. InSC ’06: Proceed-
ings of the 2006 ACM/IEEE conference on Supercomputing,
page 188, New York, NY, USA, 2006. ACM.

[7] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU
cluster for high performance computing. InSC ’04: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercom-
puting, page 47, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[8] W. Fang, K. K. Lau, M. Lu, and X. Xiao. Parallel data
mining on graphics processors. Technical Report HKUST-
CS08-07, The Hong Kong University of Science and Tech-
nology, Oct 2008.

[9] M. Fatica and W.-K. Jeong. Accelerating MATLAB with
CUDA. In HPEC, Sept. 2007.

[10] P. Harish and P. J. Narayanan. Accelerating large graphalgo-
rithms on the GPU using CUDA. InHiPC, pages 197–208,
2007.

[11] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a
compiler framework for automatic translation and optimiza-
tion. InPPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, pages 101–110, New York, NY, USA, 2009. ACM.

[12] H. Nguyen(ed). GPU Gems 3. Addison-Wesley Profes-
sional, 2007.

[13] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump, M. T. El-
more, and A. R. Hurson. Tf-icf: A new term weighting
scheme for clustering dynamic data streams. InICMLA
’06: Proceedings of the 5th International Conference on
Machine Learning and Applications, pages 258–263, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[14] A. J. R. Ruiz and L. M. Ortega. Geometric algorithms on
CUDA. In GRAPP, pages 107–112, 2008.

[15] J. Stratton, S. Stone, and W. mei Hwu. Mcuda: An efficient
implementation of CUDA kernels for multi-core CPUs. In
21st Annual Workshop on Languages and Compilers for
Parallel Computing (LCPC’2008), July 2008.

[16] J. A. Stuart and J. D. Owens. Message passing on data-
parallel architectures. 23nd IEEE International Symposium
on Parallel and Distributed Processing, IPDPS, 2009.

[17] R. Wu, B. Zhang, and M. Hsu. Clustering billions of data
points using GPUs. InUCHPC-MAW ’09: Proceedings of
the combined workshops on UnConventional high perfor-
mance computing workshop plus memory access workshop,
pages 1–6, New York, NY, USA, 2009. ACM.

[18] Y. Zhang, F. Mueller, X. Cui, and T. Potok. GPU-accelerated
text mining. InWorkshop on Exploiting Parallelism using
GPUs and other Hardware-Assisted Methods, Mar, 2009.


