
Hummingbird

Introduction

1) Today, the cost of sequencing per genome via
HiSeqX is around $1,000 [1]

2) It should be possible to sequence entire genomes
at a cost of less than $100 by using NovaSeq
technology [2]

● Advances in medical computing result
in more and more applications being
ported to cloud

● Medical applications use large
amounts of data, which means large
computation time, which means large
costs

● Lack of performance prediction
frameworks for medical pipelines

● Solution?
● Hummingbird: Efficient Performance

Prediction for Genomics Applications

Method
● Read user input config file
● Downsample input files
● Execute pipeline for downsampled files on

different instance types
● Display cheapest, fastest, and fastest &

cheapest configurations

Downsampling
● One of Hummingbird’s main contributions is downsampling the input files
● Downsampling means taking the entire input file and taking the top “n”

number of lines and saving that to a new file
● The entire pipeline is now executed on the entire input file
● Once we get results for executing the downsampled input on the entire

pipeline we can make assumptions about execution of whole input files on the
entire pipeline

Output after Downsampling
● After execution of downsampled input there will be three tables. One each for standard, high-cpu and

high-mem

● The structure of each table will look as followsMachine Ideal Speedup Real Speedup Execution
Time

Normalized
Speedup

Cost(based on
exec time)

T2 (base) 1 1 = T2/T2 1

T4 2 S4 = T2/T4 S4

T8 4 S8= T2 /T8 S8/2

T16 8 S16= T2/T16 S16/4

T32 16 S32= T2/T32 S32/8

Here T2 indicates a machine with 2 VCPUs

Output after Downsampling (Contd.)

● Once the three tables are populated the user’s choice has to be taken into account. If he/she wants a

fastest and cheapest configuration, the following steps apply

○ The row with the highest normalized score will be pulled from each table (there are three tables in

total)

○ Among the three, the configuration with the least cost will be chosen as the fastest and cheapest

configuration

● If the user wants a cheapest or fastest configuration:

○ The row with the cheapest cost or least execution time will be pulled from each table

○ Among those three configurations, the configuration with the least cost or least execution time will

be chosen, leading to the cheapest or the fastest configuration

Experimental Setup
● Hummingbird executes on two pipelines

○ GATK - Illumina Platinum Genomes
■ GATK has multiple different stages
■ Our aim is to provide a recommendation for each stage

○ MuTect2 - Texas Cancer Research Biobank

● Uses dsub as job scheduler for Google cloud
● Google cloud has three categories of instances

○ Highcpu
○ Standard
○ Highmem

● Experiments conducted on 8, 16 and 32 VCPU variant of three categories

Result
271998

● On the right is downsampling for MuTect
● Just like BWA, trends remain the same in

spite of downsampling

● On the left is downsampling for BWA
● Trends remain the same in spite of

downsampling

Result(contd.)

● Hummingbird predicts the correct configuration with high accuracy
● Takes minimal time for prediction
● Almost 2 orders of magnitude less time than the whole input

MuTect2 BQSR Stage 1

Result
Fastest(H) highmem-32

Exec
Time(hour)

66.9 75.5

Cost($) 80 143

● Fastest & Cheapest(H) &
highmem-32

○ Reduction in cost:
72%

○ Reduction in
execution time: -2%

Cheapest(H) standard-
16

Exec
Time(hour)

92.5 77.9

Cost($) 35 59

Fastest &
Cheapest
(H)

highmem-32

Exec
Time(hour)

77.5 75.5

Cost($) 38 143

● Fastest(H) &
highmem-32

○ Reduction in cost:
43%

○ Reduction in
execution time:
11%

● Cheapest(H) &
standard-16

○ Reduction in cost:
40%

○ Reduction in
execution time:
-18%

Work ongoing at NC State
● Profiling of applications

○ Lot of parameters that can be tuned
○ Vary those parameters and record the changes
○ Will help in suggesting to the user an optimum set of parameters for executing jobs

Future Work
● Ability to predict execution time
● Robust error handling
● Cloud agnostic
● Generic framework

OAI Pipeline

Introduction
● Collection of MR Images of knee
● Taken over a time period
● Aim is to understand the progression of Osteoarthritis over time
● Another aim is to interpret the images to develop a cure for OA

Method
● Get patient ID from image names
● Store patient ID and associated image names in a database
● Distribute images of each patient to a node
● Perform segmentation to extract cartilage

Tools
● File system to hold images and intermediate data - HDFS
● Resource Manager for scheduling jobs to different nodes - YARN
● Database to hold patient data - SQLite

Future Work
● Autotuning

○ Various parameters in a medical framework that can be autotuned

● Heterogeneous Scheduling

Hummingbird & OAI Pipeline
● Aim is to integrate Hummingbird and the OAI pipeline
● Once generic version of Hummingbird is developed, it can be used to predict

the optimum configuration for executing OAI pipeline in the cloud
● Downsampling can be applied to the OAI pipeline as well

○ Considering one image per patient, and then executing the entire pipeline on one image for
each patient, and a limited number of patients could potentially give the optimum configuration

