
Literature Review
Using machine learning in real-

time system

Hang Xu

Outline

1. Historic use of ML in real-time system

2. Dimensions to distinguish ML papers

3. Relation with my work

Historic use of ML in RTS

1. Blackbox technique to deal with the uncertainty
and complexity in the development of RTS

2. Narrower scope to apply ML due to the
reduction of uncertainty by other static and
deterministic RT analysis approaches

3. New uncertainty and complexity in RTS
making ML still alive now

Use ML to predict worst execution time of real time system

1. Complexity to precisely and efficiently predict execution time:

(1) CPU hardware complexity – branch prediction,OOE,prefectching

(2) Variety on hardware, OS

(3) resource sharing among tasks or early multi-core system – cache, memory bus

→Relatively more papers on using ML to predict the WCET with full static information

1. Statistical Prediction of Task Execution Times through Analytic Benchmarking for
Scheduling in a Heterogeneous Environment, M.A. Iverson ; F. Ozguner ; L.C. Potter

,Heterogeneous Computing Workshop (HCW'99)

2. Reliable Estimation of Execution Time of Embedded Software, P Giusto, G Martin, E
Harcourt, Design, automation and test in Europe(DATE), 2001

3. A Data Analysis Method for Software Performance Prediction, G. Bontempi,W.
Kruijtzer, (DATE 2002)

4. Accurate Software Performance Estimation Using Domain Classification and Neural
Networks, Marcio Seiji Oyamada,Felipe Zschornack, Flavio Rech Wagner, symposium

on Integrated circuits and system design (SBCCI 2004)

Use ML to predict worst execution time of real time system

2. Improved and mature static analysis techniques(around 2010):
(1) Abstract interpretation
(2) Well static modeling of caching effect in single-core and multi-core

architectures
(3) Well static modeling of CPUs and OSes
→ Well static analysis approaches and tools (I.g. Absint: ait), few papers on using

ML to predict WCET after design
1. Combining Abstract Interpretation with Model Checking for Timing Analysis of

Multicore Software, Mingsong Lv, Wang Yi, Nan Guan, Ge Yu ,RTSS2010
2. A Fast and Precise Static Loop Analysis based on Abstract Interpretation

Program Slicing and Polytope Models, P. Lokuciejewski, D. Cordes, H. Falk, P.
Marwedel, International Symposium on Code Generation and
Optimization(CGO) 2009

3. A Unified WCET Analysis Framework for Multi-core Platforms, Sudipta
Chattopadhyay ; Chong Lee Kee ,etc. RTAS2012

4. Toward Static Timing Analysis of Parallel Software -- Technical Report,
Andreas Gustavsson, Jan Gustafsson, and Björn Lisper

Use ML to predict worst execution time of real time system

3. Drawback of static analysis techniques

(1) prior and complete knowledge of real time systems(Source
code, hardware may not be available)

(2) longer tool-chain and more manual support
→ Recent papers using ML to estimate WCET only on early

stage of the development of a project
1. Huybrechts, T., et al.: A new hybrid approach on WCET analysis for real-

time systems using machine learning. In: Brandner, F. (ed.) (WCET 2018)

2. Early WCET Prediction Using Machine Learning, Armelle Bonenfant and
Denis Claraz and Marianne de Michiel and Pascal Sotin,17th WCET 2017

3. Early execution time-estimation through automatically generated timing
models, Peter Altenbernd, Jan Gustafsson, Björn Lisper,Friedhelm
Stappert, Real-Time Syst Journal(2016)

Outline

1. Evolution of ML in real-time system

2. Dimensions to distinguish ML papers

3. Relation with my work

Dimensions to distinguish existing ML
papers

1. Feature selection (most are supervised
learning)

2. Variety and complexity of ML techniques

3. Different application domain

Examples of features

Most based on static information from source code

- count of certain sorts of instructions

- count of certain sorts of variables

- count of certain sorts of functions

Some based on observations from measurements

- execution time

- power consumption

The selection - based on domain expert knowledge

Variety of ML Techniques
Compared to early papers(during 2000s), later ones tend to use more

advanced and complex ML techniques.

- KNN, SVM, ANN, DT, regression, ensembling model, etc.

(genetic algorithm may not be considered ML but randomness based AI in my
opinion)

1. Methods for Prediction, Simulation and Verification of Real-Time Software
Architectural Design based on Machine Learning Algorithms, Mostafa Anwar
Taie, Ibrahim El-Faramawy, Mohamed Elmawazini, SAE International
tenchnique report 2015

 2. Intelligent Prediction of Execution Times, D Tetzlaff, S Glesner -
International Conference on Informatics & Applications (ICIA), 2013

3. Development of machine learning‐based real time scheduling systems:
using ensemble based on wrapper feature selection approach, Y.R. Shiue,
R.S. Guh, K.C. Lee International Journal of Production Research, (2012)

4. On the use of machine learning to predict the time and resources consumed
by Applicationss, Andréa Matsunaga, José A.B. Fortes, CCGRID 2010

Different Application Domain
Scheduling optimization;

Anomaly detection;

Power management;

1. Real-time scheduling via reinforcement learning,R.
Glaubius, T. Tidwell, C. D. Gill, W. D. Smart, Uncertainty in
Artificial Intelligence (UAI2010)

2. J. Song, G. Fry, C. Wu, G. Parmer, "CAML: Machine
learning-based predictable system-level anomaly
detection", Proc. Workshop Secur. Dependability Crit.
Embedded Real-Time Syst., (CERTS), 2016.

3. Task aware hybrid DVFS for multi-core real-time systems
using machine learning, F.M.M. Islama, M.Lin L.T.Yang
K.R. Choo, Information sciences. 2018

Outline

1. Evolution of ML in real-time system

2. Dimensions to distinguish ML papers

3. Relation with my work

My work

1. Find uncertainty and complexity in previous work

- consider influence among set of tasks

- online learning instead of offline learning finally

- predict more instantaneous timing information(instant execution
times on the fly of the task set) instead of the WCET bound

2. Use advanced ML techniques

- ANN + RNN (take into account the temporal dependence)

 Mining temporal intervals from real-time system traces, Sean
Kauffman, Sebastian Fischmeister, SoftwareMining 2017

This work generates the user defined “interesting” interval for real
time system traces, which could be the pre-stage of using RNN.

3. The maximumly tangible data input for online learning: time
stamps, ordering of task sets, other states of task sets.

1. Huybrechts, T., et al.: A new hybrid approach on WCET analysis for real-time systems using
machine learning. In: Brandner, F. (ed.) (WCET 2018)

their method is for embedded system:

-find blocks in code - consecutive, one entry one exit,

-timing measurement on each block

-statically combine measurements

-supervised learning; selected features

their purpose is for insight of WCET in early development cycle However, in the early
“project definition” stages where there is little or no source code available to perform
analysis on.

features – count of operators , count of access

The attributes in this experiment are initially selected by visually inspecting the blocks
and identifying which code characteristics would have a significant impact on the
execution time. Later, the selection is from a feature pool by a feature selector. The
feature selector picks up the features with high correlation with the WCET data.

training feature and data is obtained statically;

(no temporal relationship in these source features and source data)

future work: 1. improve ML model (more model options and polished existing model)

2. feature selection 3. bigger blocks 4. additional features from hardware/toolchain

Results of Paper1
Different ML techniques perform in huge variation on different benchmarks. No
one gives uniformly dominant performance over benchmarks.

The experiments are conducted on TACLe-benchmark.

2. Intelligent Prediction of Execution Times, D Tetzlaff, S Glesner - International
Conference on Informatics & Applications (ICIA), 2013

Machine Learning techniques based on supervised learning

Assumption: that there exists a linear relationship between the amount of (classified)
machine code instructions to be executed by the function and its execution time.
Therefore, they consider linear regression modeling, for which several learning
algorithms exist.

- decision trees,

- k-Nearest Neighbor (k-NN),

- Ordinary Least Squares Estimation (OLS),

- the Iterated Reweighted Least Squares (IWLS)

- Support Vector Machine (SVM)

- Predicting Query Run-time 2 (PQR2) technique that is based on a decision tree

use static code features of applications

More sorts of and more complex ML methods are used and compared.

Results of Paper2

The Figure 3a does not have a correct unit
for y-axis (the error of WCET prediction).

Figure 3b shows none of the prediction
algorithms perform accurate enough.

Figure 3c only shows the accuracy of
prediction in the training phase. So overall,
the result section is problematic.

3.Statistical Prediction of Task Execution Times through Analytic
Benchmarking for Scheduling in a Heterogeneous Environment,
 M.A. Iverson ; F. Ozguner ; L.C. Potter ,Heterogeneous
Computing Workshop (HCW'99)

Predict the execution time of tasks in a distributed
parallel computing system with heterogeneous
computing environments (such as different machines).

Execution time is treated as a random variable and is
statistically estimated from past observations. A set of
past observations is kept for each machine and used to
make new execution time predictions.

KNN is used; Nonparametric Regression

Most Relevant Results of Paper 3
Experiments are conducted on

16 heterogeneous machines.

They compare three variations

of kNN methods. The best one

shows less than 10% average

prediction error.

4. Reliable Estimation of Execution Time of Embedded
Software, P Giusto, G Martin, E Harcourt, Design,
automation and test in Europe(DATE), 2001

This work models both the target system (CPU instruction set,
target compiler, etc.) and the structure of the software
program at an abstraction level that makes the estimate of
execution time reasonable without losing too much accuracy.

A source-based approach analyzes the original C source code.

Use a stepwise multiple linear regression approach, along with
multiple basic linear regression models and correlation
analysis.

Results of Paper 4

The static information and linear regression
based prediction shows poor performance
on the accuracy. The percentage of
absolute error is never smaller than 20%
on dynamically branching control code
benchmarks except for 1% absolute error
on FFT benchmark – a mathematical
operation dominated benchmark.

5. Accurate Software Performance Estimation Using Domain
Classification and Neural Networks, Marcio Seiji
Oyamada,Felipe Zschornack, Flavio Rech Wagner,
symposium on Integrated circuits and system design (SBCCI
2004)

Use neural network to predict WCET on embedded systems.

Two steps: (1)Domain classification for applications into different
NN. This is done by comparing the metric of CFG_weight.

(2) NN: inputs are the number of executed instructions of
different instruction types, while the expected result is the
number of cycles consumed by the embedded application. A
cycle-accurate simulator is required, to extract the number of
executed instructions and the total number of cycles
consumed by the application. So the data is obtained through
simulation first.

Results of Paper 5
The paper trains generic model and domain-specific model based on different

division of training dataset. The two models do not show remarkable
difference in the accuracy of prediction and neither shows highly reliable
prediction Max relative error at least 24%.

6. Early execution time-estimation through automatically generated timing
models, Peter Altenbernd, Jan Gustafsson, Björn Lisper,Friedhelm Stappert,
Real-Time Syst Journal(2016)

Predict the execution time of software through an early,
source-level timing analysis at the early stage of the
development of RTS.

Methods:

(1)It is based on a set of virtual instructions (arithmetic/logic
operations, branch, function call/return, etc.) defining an
abstract machine able to execute the source code.

(2)A source-level timing model is automatically generated
for the given compiler-hardware combination.

(3)The prediction model is linear and consists of fixed costs
for the virtual instructions.

Results of Paper 6
The experiment is conducted based on training data collected from GEM5 simulator.

The predictions are accurate (relative error < 10%) in about 2/3 of the benchmarks. The worst
accuracy could reach 77%.

7. Nonlinear approach for estimating WCET during programming
phase, F.Meng,X.Su, Z. Qu, Cluster Computing (2016)

This paper employs least square support vector machine as
nonlinear model to estimate WCET of embedded systems.

This ML model is supervised and based on two sorts of input
data features.

(1) static feature in the object code (fingerprints of blocks of
object code)

(2) dynamic feature – counts of instructions(static in many other
papers) and simulated execution time (simplescalar)

(3) labeled WCET data for training is obtained from simplescalar
simulator

They use different metrics of similarity for different groups of
sample code as input data in the evaluation:

(1) levenshtein_distance (2) cossine similarity and maxquotient

Results of Paper 7

The results demonstrate that the more similar the
testing code is to the training code, the higher
accuracy the estimation could achieve.

8. Methods for Prediction, Simulation and Verification of Real-Time
Software Architectural Design based on Machine Learning
Algorithms, Mostafa Anwar Taie, Ibrahim El-Faramawy,

 Mohamed Elmawazini, SAE International tenchnique report 2015

In this paper, the WCET of OS processes are researched instead of
WCET of tasks for embedded systems. Different versions of OS
software are also taken into account.

Their work manages the prediction of ETs of multiple OS processes at
the same time using different ML models on different levels (process
level, group level).

The features are obtained from softwares of previous release. The
features include static features of AUTOSAR Application (APP) and
Basic Software(BSW) module, seniority of developers, hardware
factors and customized features.

Different ML techniques are investigated and compared (KNN, SVM,
regression, NN, Extreme Learning Machines).

Features of paper 8

Result of Paper 8

RAE: relative average error; CC: correlation coefficient

Most of the results show high unreliability of using ML to predict WCET.

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30

