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Quantum Computing Fundamentals
Basic unit of computation – qubit

Exists in superposition –
ex. |Ψ〉 = ⍺|0〉 + β|1〉 where ⍺ & β are 

probability amplitudes – complex numbers

Probability of measuring |0〉 and |1〉 are ⍺2

and β2 respectively.



Basic Quantum Gates



Basic Quantum Gates
|0〉 1/√2|0〉 +

1/√2|1〉
Hadamard Gate	– Used	to	create	superposition
Equal	probabilities	 of	measuring	|0〉 or	|1〉



Basic Quantum Gates
Hadamard Gate	– Used	to	create	superposition
Equal	probabilities	 of	measuring	|0〉 or	|1〉

|1〉

|0〉

|1〉

|1〉
Controlled	NOT	Gate	– 2	qubit gate
Flips	target	(2nd)	qubit if	control	(1st)	qubit is	1

|0〉 1/√2|0〉 +
1/√2|1〉



Basic Quantum Gates
Hadamard Gate	– Used	to	create	superposition
Equal	probabilities	 of	measuring	|0〉 or	|1〉

Controlled	NOT	Gate	– 2	qubit gate
Flips	target	(2nd)	qubit if	control	(1st)	qubit is	1
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Toffoli Gate	– 3	qubit gate
Flips	target	(3rd)	qubit if	both	control	 (1st	&	2nd)	qubits is	1
Along	with	the	Hadamard gate,	Toffoli gate	is	universal
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Grover’s Algorithm
Problem: For a black box function, find unique input for a 
particular output where size of function domain is N

Classical Solution: Requires N iterations in the worst case

Quantum Solution: Requires √N iterations

Applications: DB search, breaking cryptography
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}
Process	all	input	combinations	simultaneously	

- Measurement	yields	1	of	8	input	states	and	corresponding	 R
R	flips	(|0〉 à |1〉 or	|1〉 à |0〉)	for	values	where	Uwevaluates	to	1

- Funny	things	happen	when	R	is	not	a	pure	state	(|0〉 or	|1〉)
Non-trivial	to	extract	desired	input	value
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n input	qubits in	equal	superposition	 of	all	N states

R is	set	to	to	|-〉 state

Uw is	the	function	 encoded	as	a	black	box

Grover	diffusion	 operator	reflects	probability	amplitudes	around	the	average

}

1/√2|0〉 - 1/√2|1〉 or	|-〉 
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Grover’s Algorithm - Setup
Apply Hadamard on n (4) input 
qubits for 2n (16) input states

Creates	equal	superposition	 of	all	N	=	
2n input	states,	each	with	probability	
amplitude	of	1/√N	(1/4)
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1st Iteration – Phase Inversion
Inputs go into black box along with 
ancilla qubit in |-〉 state
Funny thing: R (|-〉) remains the 
same for all states
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Inputs go into black box along with 
ancilla qubit in |-〉 state
Funny thing: R (|-〉) remains the 
same for all states
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Inverts phase of desired input from 1/√N (1/4) 
to -1/√N (-1/4)

1/√16|0000〉 + 1/√16|0001〉 + … 
- 1/√16|1001〉 + … + 1/√16|1111〉

Measurement at this stage would yield 
completely random n & R
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Measurement	at	this	stage	would	give	us	
the	desired	input	with	a	higher	probability

But	is	that	good	enough?



√N Iterations
We repeat the phase inversion and diffusion steps for √N 
iterations

Desired result with high probability

Can be extended to work for multiple matching inputs
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Grover’s Oracle
The Grover’s black box / Oracle contains the function we 
need to invert

Need to succinctly and efficiently represent the oracle while 
preserving rules of quantum computation

This is where NChooseK comes in
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NChooseK Example

Maps quantum state from |bcd〉 |x〉 to 
|bcd〉 |x⨁1〉 : when 2 or 3 of |b〉, |c〉 and |d〉 are |1〉
|bcd〉 |x〉 : otherwise
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Generality of NChooseK
High-level – abstracts away underlying architecture

Enables formal specification with unique interpretation 
across architectures

Can be easily integrated into classical workloads



Circuit Satisfiability
Problem: Given boolean
expression, find set of inputs to 
evaluate expression as true



Circuit Satisfiability
Problem: Given boolean
expression, find set of inputs to 
evaluate expression as true

Primitive operations can be 
used to express circuit 
satisfiability in NChooseK
terms



Map Coloring

Problem: Color map with c colors with adjacent regions 
with different colors

Problem expressed as NChooseK primitives



Code Generator
We implement code generator for IBM Q quantum 
computers

Given NChooseK primitives, Qiskit code for execution is 
generated



Code Generator Example
Generated code for XOR as NChooseK({A, B, C}, {0, 2})
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Evaluation

We evaluate the code generator on 2 factors
CCNOT gate count: CCNOT is expensive and cost of 
the circuit is dominated by it
Circuit depth: Number of time steps required, important 
because of qubit decoherence time
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CCNOT Gate Count
For any N, gates required is 
maximum when k = N/2

Gates increases 
exponentially with N

Trade-off between using 
simple circuits and larger 
NChooseK primitives
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Circuit Depth
Like gate count, circuit depth 
is maximum when k=N/2

Again, depth increases 
exponentially with increasing 
N

Reaffirms need for 
establishing trade-off



NChooseK in Grover
Implementation of 
NChooseK(3,{0,2}) as 
Quantum Oracle

4 expected outcomes have 
25% probability while 0% 
for others
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Conclusion
We present NChooseK for expressing quantum computation

We demonstrate generality of the model
Using circuit satisfiability and map coloring

Implement and describe the code generator
Evaluate gate counts and circuit depth for arbitrary N and k parameters

Future work: 
Extend generator to combine multiple NChooseK primitives
Also explore trade-off space to automatically break-down into smaller primitives
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