
Implementing NChooseK on IBM Q
Quantum Computer Systems
Harsh Khetawat, Ashlesha Atrey, George Li,

Frank Mueller, Scott Pakin
Reversible Computing 2019

05/02/2019

Quantum Computing Fundamentals
Basic unit of computation – qubit

Quantum Computing Fundamentals
Basic unit of computation – qubit

Exists in superposition –
ex. |Ψ〉 = ⍺|0〉 + β|1〉 where ⍺ & β are

probability amplitudes – complex numbers

Quantum Computing Fundamentals
Basic unit of computation – qubit

Exists in superposition –
ex. |Ψ〉 = ⍺|0〉 + β|1〉 where ⍺ & β are

probability amplitudes – complex numbers

Probability of measuring |0〉 and |1〉 are ⍺2

and β2 respectively.

Basic Quantum Gates

Basic Quantum Gates
|0〉 1/√2|0〉 +

1/√2|1〉
Hadamard Gate	– Used	to	create	superposition
Equal	probabilities	 of	measuring	|0〉 or	|1〉

Basic Quantum Gates
Hadamard Gate	– Used	to	create	superposition
Equal	probabilities	 of	measuring	|0〉 or	|1〉

|1〉

|0〉

|1〉

|1〉
Controlled	NOT	Gate	– 2	qubit gate
Flips	target	(2nd)	qubit if	control	(1st)	qubit is	1

|0〉 1/√2|0〉 +
1/√2|1〉

Basic Quantum Gates
Hadamard Gate	– Used	to	create	superposition
Equal	probabilities	 of	measuring	|0〉 or	|1〉

Controlled	NOT	Gate	– 2	qubit gate
Flips	target	(2nd)	qubit if	control	(1st)	qubit is	1

|1〉

|1〉

|1〉

|1〉

|1〉|0〉

Toffoli Gate	– 3	qubit gate
Flips	target	(3rd)	qubit if	both	control	 (1st	&	2nd)	qubits is	1
Along	with	the	Hadamard gate,	Toffoli gate	is	universal

|1〉

|0〉

|1〉

|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

Grover’s Algorithm

Grover’s Algorithm
Problem: For a black box function, find unique input for a
particular output where size of function domain is N

Grover’s Algorithm
Problem: For a black box function, find unique input for a
particular output where size of function domain is N

Classical Solution: Requires N iterations in the worst case

Grover’s Algorithm
Problem: For a black box function, find unique input for a
particular output where size of function domain is N

Classical Solution: Requires N iterations in the worst case

Quantum Solution: Requires √N iterations

Grover’s Algorithm
Problem: For a black box function, find unique input for a
particular output where size of function domain is N

Classical Solution: Requires N iterations in the worst case

Quantum Solution: Requires √N iterations

Applications: DB search, breaking cryptography

Quantum Advantage
|0〉 1/√2|0〉 +

1/√2|1〉
|0〉 1/√2|0〉 +

1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

Quantum Advantage

1/√8|000〉 + 1/√8|001〉 + 1/√8|010〉+
1/√8|011〉 + 1/√8|100〉 + 1/√8|101〉+
1/√8|110〉 + 1/√8|111〉}|0〉 1/√2|0〉 +

1/√2|1〉
|0〉 1/√2|0〉 +

1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

Quantum Advantage

} 3

|R〉 |R〉⨁ Uw(n)

3

Process	all	input	combinations	simultaneously	
- Measurement	yields	1	of	8	input	states	and	corresponding	 R

|0〉 1/√2|0〉 +
1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

1/√8|000〉 + 1/√8|001〉 + 1/√8|010〉+
1/√8|011〉 + 1/√8|100〉 + 1/√8|101〉+
1/√8|110〉 + 1/√8|111〉

Quantum Advantage

Process	all	input	combinations	simultaneously	
- Measurement	yields	1	of	8	input	states	and	corresponding	 R

R	flips	(|0〉 à |1〉 or	|1〉 à |0〉)	for	values	where	Uwevaluates	to	1
- Funny	things	happen	when	R	is	not	a	pure	state	(|0〉 or	|1〉)

} 3

|R〉 |R〉⨁ Uw(n)

3|0〉 1/√2|0〉 +
1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

1/√8|000〉 + 1/√8|001〉 + 1/√8|010〉+
1/√8|011〉 + 1/√8|100〉 + 1/√8|101〉+
1/√8|110〉 + 1/√8|111〉

Quantum Advantage

}
Process	all	input	combinations	simultaneously	

- Measurement	yields	1	of	8	input	states	and	corresponding	 R
R	flips	(|0〉 à |1〉 or	|1〉 à |0〉)	for	values	where	Uwevaluates	to	1

- Funny	things	happen	when	R	is	not	a	pure	state	(|0〉 or	|1〉)
Non-trivial	to	extract	desired	input	value

3

|R〉 |R〉⨁ Uw(n)

3|0〉 1/√2|0〉 +
1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

|0〉 1/√2|0〉 +
1/√2|1〉

1/√8|000〉 + 1/√8|001〉 + 1/√8|010〉+
1/√8|011〉 + 1/√8|100〉 + 1/√8|101〉+
1/√8|110〉 + 1/√8|111〉

n input	qubits in	equal	superposition	 of	all	N states

n input	qubits in	equal	superposition	 of	all	N states

R is	set	to	to |-〉 state

}

1/√2|0〉 - 1/√2|1〉 or	|-〉

n input	qubits in	equal	superposition	 of	all	N states

R is	set	to	to	|-〉 state

Uw is	the	function	 encoded	as	a	black	box

}

1/√2|0〉 - 1/√2|1〉 or	|-〉

n input	qubits in	equal	superposition	 of	all	N states

R is	set	to	to	|-〉 state

Uw is	the	function	 encoded	as	a	black	box

Grover	diffusion	 operator	reflects	probability	amplitudes	around	the	average

}

1/√2|0〉 - 1/√2|1〉 or	|-〉

Grover’s Algorithm - Setup
Apply Hadamard on n (4) input
qubits for 2n (16) input states

Grover’s Algorithm - Setup
Apply Hadamard on n (4) input
qubits for 2n (16) input states

Creates	equal	superposition	 of	all	N	=	
2n input	states,	each	with	probability	
amplitude	of	1/√N	(1/4)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1st Iteration – Phase Inversion
Inputs go into black box along with
ancilla qubit in |-〉 state
Funny thing: R (|-〉) remains the
same for all states

n

|-〉 |-〉

n

1st Iteration – Phase Inversion
Inputs go into black box along with
ancilla qubit in |-〉 state
Funny thing: R (|-〉) remains the
same for all states

n

|-〉 |-〉

n

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

Inverts phase of desired input from 1/√N (1/4)
to -1/√N (-1/4)

1/√16|0000〉 + 1/√16|0001〉 + …
- 1/√16|1001〉 + … + 1/√16|1111〉

Measurement at this stage would yield
completely random n & R

1st Iteration - Diffusion

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

|0
00
0>

|0
00
1>

|0
01
0>

|0
01

1>
|0
10
0>

|0
10

1>
|0
11
0>

|0
11

1>
|1
00
0>

|1
00
1>

|1
01

0>

|1
01

1>
|1
10
0>

|1
10

1>

|1
11

0>

|1
11

1>

0.22

In	this	stage	the	probability	amplitudes	of	all	
states	reflects	around	 the	average	

1st Iteration - Diffusion

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

|0
00
0>

|0
00
1>

|0
01
0>

|0
01

1>
|0
10
0>

|0
10

1>
|0
11
0>

|0
11

1>
|1
00
0>

|1
00
1>

|1
01

0>

|1
01

1>
|1
10
0>

|1
10

1>

|1
11

0>

|1
11

1>

0.22

In	this	stage	the	probability	amplitudes	of	all	
states	reflects	around	 the	average	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|0
00
0>

|0
00
1>

|0
01
0>

|0
01

1>
|0
10
0>

|0
10

1>
|0
11
0>

|0
11

1>
|1
00
0>

|1
00
1>

|1
01

0>

|1
01

1>
|1
10
0>

|1
10

1>

|1
11

0>

|1
11

1>

Measurement	at	this	stage	would	give	us	
the	desired	input	with	a	higher	probability

But	is	that	good	enough?

√N Iterations
We repeat the phase inversion and diffusion steps for √N
iterations

Desired result with high probability

Can be extended to work for multiple matching inputs

Grover’s Oracle

Grover’s Oracle
The Grover’s black box / Oracle contains the function we
need to invert

Grover’s Oracle
The Grover’s black box / Oracle contains the function we
need to invert

Need to succinctly and efficiently represent the oracle while
preserving rules of quantum computation

Grover’s Oracle
The Grover’s black box / Oracle contains the function we
need to invert

Need to succinctly and efficiently represent the oracle while
preserving rules of quantum computation

This is where NChooseK comes in

NChooseK

NChooseK
Single parameterized primitive

Can be used to express wide variety of problems

NChooseK
Single parameterized primitive

Can be used to express wide variety of problems

Constrains k of n boolean variables to true

NChooseK
Single parameterized primitive

Can be used to express wide variety of problems

Constrains k of n boolean variables to true

NChooseK Example

Maps quantum state from |bcd〉 |x〉 to
|bcd〉 |x⨁1〉 : when 2 or 3 of |b〉, |c〉 and |d〉 are |1〉
|bcd〉 |x〉 : otherwise

Generality of NChooseK

Generality of NChooseK
High-level – abstracts away underlying architecture

Generality of NChooseK
High-level – abstracts away underlying architecture

Enables formal specification with unique interpretation
across architectures

Generality of NChooseK
High-level – abstracts away underlying architecture

Enables formal specification with unique interpretation
across architectures

Can be easily integrated into classical workloads

Circuit Satisfiability
Problem: Given boolean
expression, find set of inputs to
evaluate expression as true

Circuit Satisfiability
Problem: Given boolean
expression, find set of inputs to
evaluate expression as true

Primitive operations can be
used to express circuit
satisfiability in NChooseK
terms

Map Coloring

Problem: Color map with c colors with adjacent regions
with different colors

Problem expressed as NChooseK primitives

Code Generator
We implement code generator for IBM Q quantum
computers

Given NChooseK primitives, Qiskit code for execution is
generated

Code Generator Example
Generated code for XOR as NChooseK({A, B, C}, {0, 2})

Code Generator Example
Generated code for XOR as NChooseK({A, B, C}, {0, 2})

Evaluation

We evaluate the code generator on 2 factors

Evaluation

We evaluate the code generator on 2 factors
CCNOT gate count: CCNOT is expensive and cost of
the circuit is dominated by it

Evaluation

We evaluate the code generator on 2 factors
CCNOT gate count: CCNOT is expensive and cost of
the circuit is dominated by it
Circuit depth: Number of time steps required, important
because of qubit decoherence time

CCNOT Gate Count

CCNOT Gate Count
For any N, gates required is
maximum when k = N/2

CCNOT Gate Count
For any N, gates required is
maximum when k = N/2

Gates increases
exponentially with N

CCNOT Gate Count
For any N, gates required is
maximum when k = N/2

Gates increases
exponentially with N

Trade-off between using
simple circuits and larger
NChooseK primitives

Circuit Depth

Circuit Depth
Like gate count, circuit depth
is maximum when k=N/2

Circuit Depth
Like gate count, circuit depth
is maximum when k=N/2

Again, depth increases
exponentially with increasing
N

Circuit Depth
Like gate count, circuit depth
is maximum when k=N/2

Again, depth increases
exponentially with increasing
N

Reaffirms need for
establishing trade-off

NChooseK in Grover
Implementation of
NChooseK(3,{0,2}) as
Quantum Oracle

4 expected outcomes have
25% probability while 0%
for others

Conclusion
We present NChooseK for expressing quantum computation

Conclusion
We present NChooseK for expressing quantum computation

We demonstrate generality of the model
Using circuit satisfiability and map coloring

Conclusion
We present NChooseK for expressing quantum computation

We demonstrate generality of the model
Using circuit satisfiability and map coloring

Implement and describe the code generator
Evaluate gate counts and circuit depth for arbitrary N and k parameters

Conclusion
We present NChooseK for expressing quantum computation

We demonstrate generality of the model
Using circuit satisfiability and map coloring

Implement and describe the code generator
Evaluate gate counts and circuit depth for arbitrary N and k parameters

Future work:
Extend generator to combine multiple NChooseK primitives
Also explore trade-off space to automatically break-down into smaller primitives

Acknowledgements

Supported in part by NSF grants1525609 and 1813004 and by the Laboratory
Directed Research and Development program of Los Alamos National
Laboratory under project numbers 20160069DR and 20190065DR.

Supported by the U.S. Department of Energy through Los Alamos National
Laboratory. (contract no.~89233218CNA000001).

