Effective Fault Tolerance in Large Scale Computing Systems – Production Clusters

Potential Research Directions

Anwesha Das 21st February 2019

Today's Talk

Performance Logs for HPC Application Diagnosis

- Tools: LDMS, PerfExpert SC'14, SC'10
- Application: TPDS'18, ISC'18, CORRMEXT HiPC'17
- Failure Prediction Solution in non-HPC context
 - DeepView NSDI'18 (Virtual Hard Disks)
 - Prefix SIGMETRICS'18 (Network Switches)
- Potential Research in Large–Scale Computing Systems
 - ✓ Connection to my work (Cray–HPC, Compute Node Reliability)

Failure Prediction in Systems

- Large–Scale Computing Systems
 - Changing Scale, Complexity, Dynamicity, Heterogeneity
 - Evolving Failures: Competing Fault Tolerance, Cascading Recovery, Performance Interference

Emergent operational behaviour unanticipated during system design

- Holistic Fault Tolerance and Recovery
 - Performance diagnosis (advanced in Clouds unlike HPC)
 - Low-level system log characterization (lots in HPC unlike Clouds)
 - Better integration of diverse components during failure analysis
 - Better co-ordination between components/layers during recovery

System–Wide Monitoring

Are the HPC clusters considered really in an integrated manner?

Source: Proceedings of the 3rd bwHPC-Symposium'16

Major failure characterizations are performed focusing on the System Software Layer

> There is scope for failure analysis considering multiple layers in conjunction

System–Wide Monitoring

Modern data centers have focused on resource managers extensively

Emergent Failures: Rethinking CloudReliability at Scale

- Container based mechanisms, cgroup restriction
- > Overall anomaly detection still not robust scope for proactive resilience considering hardware events

System–Wide Monitoring

Source: Proceedings of the 3rd bwHPC-Symposium'16

- > SEDC logs and power correlations not known yet
- Scope for further investigation: Node and job correlations with system events, resource usage data

System + Resource Usage Correlations

- Most work on Ranger Supercomputer at TACC
 - All papers by Edward Chuah et al. [HiPC'17]
 - Identify earlier resource usage anomalies prior to system faults
 - Correlations+Time Bin Extraction
- Application Resilience
 - Performance logs to raise false alarms without considering system logs

Node Failure Prediction

Systemic Assessment + Proactive Performance Diagnosis

- Less quality work currently in the literature (HiPC'17, SRDS'13)
- Correlate performance logs with underlying system events?
- More research w.r.t. development/engineering efforts

Integrated Cray Deployment

- Cray logger Assessment (Desh+Aarohi), Scaling out on multiple nodes
- Addressing False Negatives/Positives, Suitable action during achievable lead time
- *Transition* research prototype to production cluster
- More development efforts, less novel research (Industrial Track or Deployment Experience)
- Equally important to move from academia to industry or national labs !!

Node Failure Prediction

Improvements on existing solutions

- Phase 1: Static (Offline) Training
 - Performance optimization, Adaptability (many papers)
 - Unbiased model, ML Fairness (Production ML system)
- Phase 2: Dynamic (Online) Inference
 - Ranking of nodes in terms of health for future job scheduling (FSE'18)
 - Real-time streaming logs versus static files

Rethink/Improve existing node, job, system logs, resource usage correlations

- Known dates of soft lockup, less generic, limited correlations
- Finer assessment of job versus node correlations for failure diagnosis

Node versus Job Correlations

- How are the job states on nodes during healthy and unhealthy times? Are there any discerning patterns?
- Are there correlations between job disruptions and node events? (not NHC logs in P0-directories but inside Torque/Slurm logs)
- Existing work LogAider (Mira RAS and Job Logs) (CCGrid'17)
- Understand coherence of unsuccessful jobs and failed nodes over time

Path Ahead

Adaptive Fault Tolerance

– No rigid strategy, with changing cluster composition

(Data Center, HPC, IoT, Embedded/Real-Time, Fog)

Emerging failures, evolving strategy w.r.t. current and future system

design and expected performance

- Not threshold based, sensitive to the evolving operational context
- Rethink system abstractions
- Fine-grained understanding of what incidents in a system lead to diverse failure manifestation still requires further research