Root Cause Analysis of Node Failures in Production HPC

Anwesha Das
29th November 2018
Today's Talk

- Online Log Parsing and Disk Error Prediction
 - Drain – ICWS'17
 - CDEF (Cloud Disk Error Forecasting) – Usenix ATC'18

- My work: Node Failures on HPC platform (Cray Supercomputers)
 - RCA – Root Cause Analysis of Compute Node Failures
Node Failure Analysis

- Environment Consideration
 - SEDC warnings
 - Cabinet Faults
 - Heartbeat Faults
 - L0SYSD_MCE

- Kernel oops
 - Breakdown of diverse reasons

- Application Triggered
 - Job correlations
 - No other external indications
Heartbeat Faults

Do all node heartbeat faults eventually result in failure?

- Many NHF (Node Heartbeat Faults) do not eventually manifest as failed nodes
 - Might be dead case, Missed heartbeat or failed health test
- In 2 weeks, 43.07% NHFs actually caused failed nodes
- On a different system, similar symptoms \{(1,1), (3,1), (1,1)\} (NHF, Failures)
SEDCWarnings

How much does the sedc warnings contribute to the manifested failures?

- Several sedc warnings pertaining to blade, *do not trigger* node failures
- There are multiple types of warnings, they occur throughout the day (24 hours) in the order of minutes (exceptions exists, e.g., B7)
- 8 blades underwent health faults (blade-level voltage/temp violations). *For those 3 days, failed nodes did not correspond to those blades*
Cabinet Faults

Do the Cabinet faults affect the nodes within the blades in them?

- Cabinet-level sedc faults are higher in logging frequency (in 24 hours) over blades
- Only 32.14% (9/28) nodes belonged to the faulty cabinets
 ✔ These RPM faults correct themselves without triggering nodes to fail
 ✔ These faults do not cause failures
L0_SYSD_MCE

➢ Blade Controller related or node-specific?

➢ Usually not coalesced with other indicative faults or errors

➢ Contains ec_hardware_errors in the event logs

➢ No more detailed information in the console logs

➢ At times, can improve the lead time by 1 to 2 minutes
Job Correlations

- Analyzed job-based relations for ~80 node failures
- Jobs cause over-allocation of resources throwing errors, with several failures, e.g., error: gres/craynetwork job 80117 node nid04551 overallocated resources by 18446744073709551613
 - All those nodes had similar console messages with similar patterns, indicating same application based root cause
 - Typically, job-triggered failures are around the same time, without logged hardware errors or kernel oops
 - Nodes were up (no failure indications) next day with different jobs scheduled
 - Around similar time-frames (temporal locality) spatially apart nodes fail with different jobs scheduled on them
Job-based Failures

Do resource overallocation cause failures?

- Specific day: 53 failures, 1 node (no jobs) failed twice, remaining 51 nodes had 16 jobs scheduled (a subset of allocated nodes suffer overallocation error)
- The graph shows what fraction of those overallocated nodes failed
- J1 and J16 had 1 & 6 failures in 600 & 683 total overallocations
- Failed nodes (Green) are a subset of the Total overallocations (Black)
Analysis of Kernel oops

- Institutional Cluster (PNNL) → Limited data, analyzed 46 nodes with Call Trace Dumps
- Reasons → out of memory, page fault or allocation failure, seg fault, hung_task timeout
- Hopper → Analyzed 56 node failures, LBUG, Application Exit Check, page allocation error or page fault
- These are all application based kernel oops, no additional major tangible hardware or software bugs present
Constance Categories of Kernel oops

What are the reasons of kernel oops?

- oom kills, may have page faults as well
- Primary root cause app-caused memory crunch
- Hung task – Flushing unable to finish on time due to slow IO
Hopper Categories of Kernel oops

What are the reasons of kernel oops?

- Process failures, Application exit checks
- Lustre FS Bug (ldml, race in the code starting threads)
- Kernel Bug (invalid opcode)
- Primary Root Cause: App-triggered resource exhaustion or FS Bug
Root Cause Analysis

- **Application causes**
 - Narrowing down the root causes, Temporal locality without spatial correlation, lead time enhancements not feasible
 - No other major H/W, S/W indicators

- **External causes (not application)**
 - Software Traps under investigation
 - Typical h/w errors, (why processor corruptions happen on certain nodes?)
 - Barring few, environment indicators not helping much yet
Plans Ahead

- Continue work on RCA
 - Traps
 - Lead time enhancements for non-job triggered failures
 - Analyze more logs
 - Understand the root cause over generic automation