
 Root Cause Analysis of Node
Failures in Production HPC

Anwesha Das
29th November 2018

 2

Today's Talk

 Online Log Parsing and Disk Error Prediction
 Drain – ICWS'17
 CDEF (Cloud Disk Error Forecasting) – Usenix ATC'18

 My work: Node Failures on HPC platform (Cray Supercomputers)
 RCA – Root Cause Analysis of Compute Node Failures

 3

Node Failure Analysis

 Environment Consideration
 SEDC warnings
 Cabinet Faults
 Heartbeat Faults
 L0SYSD_MCE

 Kernel oops
 Breakdown of diverse reasons

 Application Triggered

 Job correlations

 No other external indications

 4

Heartbeat Faults

 Many NHF (Node Heartbeat Faults) do not eventually manifest as failed nodes
– Might be dead case, Missed heartbeat or failed health test

 In 2 weeks, 43.07% NHFs actually caused failed nodes
 On a different system, similar symptoms {(1,1), (3,1), (1,1)} (NHF, Failures)

Do all node heartbeat faults eventually result in failure?

 5

SEDC Warnings

 Several sedc warnings pertaining to blade, do not trigger node failures
 There are multiple types of warnings, they occur throughout the day (24 hours)
 in the order of minutes (exceptions exists, e.g., B7)
 8 blades underwent health faults (blade-level voltage/temp violations). For
 those 3 days, failed nodes did not correspond to those blades

How much does the sedc warnings contribute to the manifested failures?

 6

Cabinet Faults

Do the Cabinet faults affect the nodes within the blades in them?

 Cabinet-level sedc faults are higher in logging frequency (in 24 hours) over blades
 Only 32.14% (9/28) nodes belonged to the faulty cabinets

 These RPM faults correct themselves without triggering nodes to fail
 These faults do not cause failures

 7

L0_SYSD_MCE

 Blade Controller related or node-specific?

 Usually not coalesced with other indicative faults or errors

 Contains ec_hardware_errors in the event logs

 No more detailed information in the console logs

 At times, can improve the lead time by 1 to 2 minutes

 8

Job Correlations

 Analyzed job-based relations for ~80 node failures

 Jobs cause over-allocation of resources throwing errors, with several failures,

 e.g., error: gres/craynetwork job 80117 node nid04551 overallocated

 resources by 18446744073709551613

– All those nodes had similar console messages with similar patterns,
indicating same application based root cause

– Typically, job-triggered failures are around the same time, without logged
hardware errors or kernel oops

– Nodes were up (no failure indications) next day with different jobs
scheduled

– Around similar time-frames (temporal locality) spatially apart nodes fail
with different jobs scheduled on them

 9

Job-based Failures

 Specific day: 53 failures, 1 node (no jobs) failed twice, remaining 51 nodes
 had 16 jobs scheduled (a subset of allocated nodes suffer overallocation error)
 The graph shows what fraction of those overallocated nodes failed
 J1 and J16 had 1 & 6 failures in 600 & 683 total overallocations
 Failed nodes (Green) are a subset of the Total overallocations (Black)

Do resource overallocation cause failures?

 10

Analysis of Kernel oops

 Institutional Cluster (PNNL) → Limited data, analyzed 46 nodes with

 Call Trace Dumps

 Reasons → out of memory, page fault or allocation failure, seg fault, hung_task
 timeout

 Hopper → Analyzed 56 node failures,

 LBUG, Application Exit Check, page allocation error or page fault

 These are all application based kernel oops, no additional major tangible

 hardware or software bugs present

 11

Constance Categories of Kernel oops

What are the reasons of kernel oops?

 oom kills, may have page faults as well
 Primary root cause app-caused memory crunch
 Hung task – Flushing unable to finish on time due to slow IO

 12

Hopper Categories of Kernel oops

What are the reasons of kernel oops?

 Process failures, Application exit checks
 Lustre FS Bug (ldlml, race in the code starting threads)
 Kernel Bug (invalid opcode)
 Primary Root Cause: App-triggered resource exhaustion or FS Bug

 13

Root Cause Analysis

 Application causes

– Narrowing down the root causes, Temporal locality without spatial
correlation, lead time enhancements not feasible

– No other major H/W, S/W indicators

 External causes (not application)

– Software Traps under investigation

– Typical h/w errors, (why processor corruptions happen on certain nodes?)

– Barring few, environment indicators not helping much yet

 14

Plans Ahead

 Continue work on RCA
– Traps
– Lead time enhancements for non-job triggered failures
– Analyze more logs
– Understand the root cause over generic automation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

