
 Failure Prediction in Large-scale
Computing Systems via Log Mining

Anwesha Das
27th September 2018

 2

Today's Talk

 NEC Labs (NGLA: Next Generation Log Analytics)
 LogMine – CIKM'16
 LogLens – ICDCS'18 (Industry Track), uses LogMine

 My work: Node Failures on HPC platform (Cray Supercomputers)
 Aarohi – Online Failure Prediction
 RCA – Root Cause Analysis of Compute Node Failures

 3

Research Problem 1

 Online Failure Prediction from Heterogeneous Logs
 Large – Scale Systems, Fast log parsing (Tokenization)
 Quick inference during testing
 Can we contribute an efficient automated framework for proactive fault

tolerance in HPC? (before the failed component stops responding)

 Impediments:

 Require low inference time

 Effective lead time → sufficient for proactive actions ?

 Low inaccuracies (False Positive and False Negative Rates), else

 contributions not worthwhile

 Generality, Cross – System Portability ?

 4

Aarohi

 Phase 1: TBP, Desh, Phase 2: Simple (no novelty)

 Phase 2: Aarohi, output of Phase 1 prerequisite (no novelty)

 5

Aarohi

 Real–time inference, process 1 log message at a time (phrase)

 RE/CFG based compilation for failure prediction

 Node–specific Failure Prediction

Aarohi

Aarohi

Aarohi

N1

N2

N3

…..........

 6

Aarohi

 Failure Chain (FC) to Grammar Rules (Algorithm 1, Offline)
 Tokenization (Raw Log → Template → Token)
 FC–based Rule Formulation, Single chain rules → LALR(1) Grammar

 Parser Formation (Algorithm 2, Offline)
 Scanner → Skip Token, Return Token + Arrival Time
 Parser → Parse log, Rule Check, Error handling semantics
 Track checked rule + current token, abort if ΔT > threshold

 Test data with Aarohi Executable (Online)

 7

Time Differences

 93% of the phrase inter-arrival times ≤ 4 mins (helps define timeout)
 6.7% outliers, ΔT ≥ 20 mins (high variance, not shown)
 More than 77% of the phrases have ΔT ≤ 1 sec (micro/milli secs)

How distant are consecutive phrases from one another ?

 8

Results

How high are the inference times with different chain lengths?

 Inference Time < 10 msecs for chain length ≤ 50
 Contains benign + FC-related phrases in the test log
 Std. Deviation ≤ ±1.56 msecs

 9

Results

Does the prediction time fluctuate based on the location of benign phrase
concentration (start/end or interspersed) in between FCs ?

 Start/End concentrated non-FC phrases → similar prediction times
 Alternate interleaved phrases interspersed in between → higher
 prediction times

 10

Factors currently being addressed

 Inference time, does not include the tokenization time (inefficiently done)

 Single instance Parser, No Simultaneous Multiple Rule Checks

– Phrase Inter-twining exists, but presence of an entire FC between two phrases is
rare (absent) for nodes (but theoretically possible)

– Log Timestamp versus System Time, handling in practice ?

 11

Factors currently being addressed

Test data stream

128, 134, 172, 156, 4, 177, 1 .. 193…...176 .…

 S
skip

S
skip

FC
5

S
skip

P
skip

FC
5
P

skip
FC

5
FC

1

 FC1: {176 177 178 179 180 137}, FC2: {172 177 178 193 137} Single Chain Rule

 S→(176 C 137) | (172 C 137), C→(B 179 180) | (B 193), B→(177 178) LALR(1) Rule

 LALR (1) evaluation results

 Raw log tokenization via parser rules

– Lustre: 29289:0:(obd_config.c:1127:class_config_llog_handler())
Skipped 1 previous similar message → Lustre_*_skipped_* → P200

– Add it to the inference time

FC5 Match
S

skip
 → Scanner skips

P
skip

 → Parser skips

 12

Research Problem 2

 How do nodes fail?
 Understand external environmental influences on compute nodes
 Underlying inter–node correlations (beyond spatial/temporal characteristics)
 Investigated limited view of isolated node failures (high-level causes)

Goal: Have better clarity of the global view through holistic analysis ?

 Current state–of–the–art:

– Studies on node–specific events in isolation (external impact unaccounted)

– Failures studied on different layers (application/hardware) or components
(interconnect/GPU) in isolation (uncorrelated)

– Spatial or temporal characterization in terms of manifested node failures

 How faults propagate causing nodes to fail?
 Facilitate better failure handling (reactive/proactive) for sustained resilience

 13

Research Problem 2
 Impediments:

 Missing SEDC data, detailed application logs

 unavailable (only job scheduler related)
 Transient faults (absent in logs, missing data

 due to logging discrepancy or intangible impact ?), hard to decipher
 Distinguish fail-slow (functional but degraded mode) versus fail-stop?
 Further inputs may be required from operators for validation !!

 Solution Design (finer to coarser)

 Backtrack from node-specific failure logs to blade→chassis→cabinet

 Correlate controller/environment/event logs around the same time-frame

 Cascading impact? Lead time enhancements? FP Rate degrades?

Not interesting: High Level Categorization (layer or component), Internal
vs. External causes, Node Failure characterization (already done)

 14

Case Studies
 1 week log – 6 node failures

 1st, 4th & 6th days – 1 failure/day, a) App-caused (out of memory/killed process

 → kernel-oops), b) App-triggered Kernel-oops (unable to handle kernel paging

 request), c) H/W errors, critical MCEs

 2nd Day – 3 failures, Neither temporally nor spatially close (3 separate groups &

 cabinets, at 4 am, 12.38 pm & 3.21 pm) but same pattern (H/W error, processor

 corruptions → MCEs → Kernel-oops)

External Factors:

 1st Day: No early indications around that time frame (purely app-caused)

 Day 2, 4 (Blade: Aries link error, get_die_temp_threshold/cannot get CPU Tjmax

 but not close to the failure time)

 6th Day: This node had several early indicators of ec_hw_errors, link errors for

 > 1 hour (fail-slow, degraded but functional component?)

 15

Results

 ~5 times increase in lead times with external factors accounted (2 to 12 mins)
 FP rate do not degrade with subsystem correlations (18.35% to 8.58%)
 Fan speed, Temperature threshold violations common but not main
 culprit of several node failures (not shown)

By how much can the lead times improve considering the external impact ?

 16

Root Cause Diagnosis

 Internal causes (console/message/consumer)

– Do not have early symptoms in controller/SEDC logs

– Lead time enhancements not possible (subject to further studies)

– App-related (App → Resource constraints → Kernel oops → Failure)

 External causes (controller/SEDC/event)

– Lead time enhancements feasible based on early symptoms

How much do the past findings hold?

1. 39% fail-slow hardware faults caused by external factors (FAST'18)
2. S/W causes 20% failures but contribute to 53% system downtime,
 H/W causes 42% failures but contribute to 23% repair time
 (261 days logs, 3.7 TB data of Blue Waters Petascale) (DSN'14)
3. App-caused congestion, Lane degrades/link failures, Bursty n/w throttling (DSN'18)
4. SWOs→Lustre FS, Failover methods (Interconnect/FS) (DSN'14, TPDS'17)

 17

Plans Ahead

 Continue work on RCA
– Measurement-driven, automating seems impractical
– Lead time characterization necessary (not much extra log based timely

correlation feasible)
– How to quantify power implications?

 On the horizon
– Real-time Streaming Logs (unlike archived logs)
– Deployment in a Production Cluster
– Demonstrate Feasibility Through Practice

• Trigger Proactive/Reactive Actions during Lead Time ?
• Assess performance trade-off ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

