
 Failure Prediction in Large-scale
Computing Systems via Log Mining

Anwesha Das
27th September 2018

 2

Today's Talk

 NEC Labs (NGLA: Next Generation Log Analytics)
 LogMine – CIKM'16
 LogLens – ICDCS'18 (Industry Track), uses LogMine

 My work: Node Failures on HPC platform (Cray Supercomputers)
 Aarohi – Online Failure Prediction
 RCA – Root Cause Analysis of Compute Node Failures

 3

Research Problem 1

 Online Failure Prediction from Heterogeneous Logs
 Large – Scale Systems, Fast log parsing (Tokenization)
 Quick inference during testing
 Can we contribute an efficient automated framework for proactive fault

tolerance in HPC? (before the failed component stops responding)

 Impediments:

 Require low inference time

 Effective lead time → sufficient for proactive actions ?

 Low inaccuracies (False Positive and False Negative Rates), else

 contributions not worthwhile

 Generality, Cross – System Portability ?

 4

Aarohi

 Phase 1: TBP, Desh, Phase 2: Simple (no novelty)

 Phase 2: Aarohi, output of Phase 1 prerequisite (no novelty)

 5

Aarohi

 Real–time inference, process 1 log message at a time (phrase)

 RE/CFG based compilation for failure prediction

 Node–specific Failure Prediction

Aarohi

Aarohi

Aarohi

N1

N2

N3

…..........

 6

Aarohi

 Failure Chain (FC) to Grammar Rules (Algorithm 1, Offline)
 Tokenization (Raw Log → Template → Token)
 FC–based Rule Formulation, Single chain rules → LALR(1) Grammar

 Parser Formation (Algorithm 2, Offline)
 Scanner → Skip Token, Return Token + Arrival Time
 Parser → Parse log, Rule Check, Error handling semantics
 Track checked rule + current token, abort if ΔT > threshold

 Test data with Aarohi Executable (Online)

 7

Time Differences

 93% of the phrase inter-arrival times ≤ 4 mins (helps define timeout)
 6.7% outliers, ΔT ≥ 20 mins (high variance, not shown)
 More than 77% of the phrases have ΔT ≤ 1 sec (micro/milli secs)

How distant are consecutive phrases from one another ?

 8

Results

How high are the inference times with different chain lengths?

 Inference Time < 10 msecs for chain length ≤ 50
 Contains benign + FC-related phrases in the test log
 Std. Deviation ≤ ±1.56 msecs

 9

Results

Does the prediction time fluctuate based on the location of benign phrase
concentration (start/end or interspersed) in between FCs ?

 Start/End concentrated non-FC phrases → similar prediction times
 Alternate interleaved phrases interspersed in between → higher
 prediction times

 10

Factors currently being addressed

 Inference time, does not include the tokenization time (inefficiently done)

 Single instance Parser, No Simultaneous Multiple Rule Checks

– Phrase Inter-twining exists, but presence of an entire FC between two phrases is
rare (absent) for nodes (but theoretically possible)

– Log Timestamp versus System Time, handling in practice ?

 11

Factors currently being addressed

Test data stream

128, 134, 172, 156, 4, 177, 1 .. 193…...176 .…

 S
skip

S
skip

FC
5

S
skip

P
skip

FC
5
P

skip
FC

5
FC

1

 FC1: {176 177 178 179 180 137}, FC2: {172 177 178 193 137} Single Chain Rule

 S→(176 C 137) | (172 C 137), C→(B 179 180) | (B 193), B→(177 178) LALR(1) Rule

 LALR (1) evaluation results

 Raw log tokenization via parser rules

– Lustre: 29289:0:(obd_config.c:1127:class_config_llog_handler())
Skipped 1 previous similar message → Lustre_*_skipped_* → P200

– Add it to the inference time

FC5 Match
S

skip
 → Scanner skips

P
skip

 → Parser skips

 12

Research Problem 2

 How do nodes fail?
 Understand external environmental influences on compute nodes
 Underlying inter–node correlations (beyond spatial/temporal characteristics)
 Investigated limited view of isolated node failures (high-level causes)

Goal: Have better clarity of the global view through holistic analysis ?

 Current state–of–the–art:

– Studies on node–specific events in isolation (external impact unaccounted)

– Failures studied on different layers (application/hardware) or components
(interconnect/GPU) in isolation (uncorrelated)

– Spatial or temporal characterization in terms of manifested node failures

 How faults propagate causing nodes to fail?
 Facilitate better failure handling (reactive/proactive) for sustained resilience

 13

Research Problem 2
 Impediments:

 Missing SEDC data, detailed application logs

 unavailable (only job scheduler related)
 Transient faults (absent in logs, missing data

 due to logging discrepancy or intangible impact ?), hard to decipher
 Distinguish fail-slow (functional but degraded mode) versus fail-stop?
 Further inputs may be required from operators for validation !!

 Solution Design (finer to coarser)

 Backtrack from node-specific failure logs to blade→chassis→cabinet

 Correlate controller/environment/event logs around the same time-frame

 Cascading impact? Lead time enhancements? FP Rate degrades?

Not interesting: High Level Categorization (layer or component), Internal
vs. External causes, Node Failure characterization (already done)

 14

Case Studies
 1 week log – 6 node failures

 1st, 4th & 6th days – 1 failure/day, a) App-caused (out of memory/killed process

 → kernel-oops), b) App-triggered Kernel-oops (unable to handle kernel paging

 request), c) H/W errors, critical MCEs

 2nd Day – 3 failures, Neither temporally nor spatially close (3 separate groups &

 cabinets, at 4 am, 12.38 pm & 3.21 pm) but same pattern (H/W error, processor

 corruptions → MCEs → Kernel-oops)

External Factors:

 1st Day: No early indications around that time frame (purely app-caused)

 Day 2, 4 (Blade: Aries link error, get_die_temp_threshold/cannot get CPU Tjmax

 but not close to the failure time)

 6th Day: This node had several early indicators of ec_hw_errors, link errors for

 > 1 hour (fail-slow, degraded but functional component?)

 15

Results

 ~5 times increase in lead times with external factors accounted (2 to 12 mins)
 FP rate do not degrade with subsystem correlations (18.35% to 8.58%)
 Fan speed, Temperature threshold violations common but not main
 culprit of several node failures (not shown)

By how much can the lead times improve considering the external impact ?

 16

Root Cause Diagnosis

 Internal causes (console/message/consumer)

– Do not have early symptoms in controller/SEDC logs

– Lead time enhancements not possible (subject to further studies)

– App-related (App → Resource constraints → Kernel oops → Failure)

 External causes (controller/SEDC/event)

– Lead time enhancements feasible based on early symptoms

How much do the past findings hold?

1. 39% fail-slow hardware faults caused by external factors (FAST'18)
2. S/W causes 20% failures but contribute to 53% system downtime,
 H/W causes 42% failures but contribute to 23% repair time
 (261 days logs, 3.7 TB data of Blue Waters Petascale) (DSN'14)
3. App-caused congestion, Lane degrades/link failures, Bursty n/w throttling (DSN'18)
4. SWOs→Lustre FS, Failover methods (Interconnect/FS) (DSN'14, TPDS'17)

 17

Plans Ahead

 Continue work on RCA
– Measurement-driven, automating seems impractical
– Lead time characterization necessary (not much extra log based timely

correlation feasible)
– How to quantify power implications?

 On the horizon
– Real-time Streaming Logs (unlike archived logs)
– Deployment in a Production Cluster
– Demonstrate Feasibility Through Practice

• Trigger Proactive/Reactive Actions during Lead Time ?
• Assess performance trade-off ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

