
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Persona: A High-Performance
Bioinformatics Framework

Stuart Byma and Sam Whitlock, EPFL; Laura Flueratoru, University Politehnica of Bucharest;
Ethan Tseng, CMU; Christos Kozyrakis, Stanford University;

Edouard Bugnion and James Larus, EPFL

https://www.usenix.org/conference/atc17/technical-sessions/presentation/byma

Persona: A High-Performance Bioinformatics Framework

Stuart Byma∗ Sam Whitlock∗ Laura Flueratoru† Ethan Tseng‡

Christos Kozyrakis§ Edouard Bugnion∗ James Larus∗

Abstract
Next-generation genome sequencing technology has
reached a point at which it is becoming cost-effective to
sequence all patients. Biobanks and researchers are faced
with an oncoming deluge of genomic data, whose pro-
cessing requires new and scalable bioinformatics archi-
tectures and systems. Processing raw genetic sequence
data is computationally expensive and datasets are large.
Current software systems can require many hours to pro-
cess a single genome and generally run only on a single
computer. Common file formats are monolithic and row-
oriented, a barrier to distributed computation.

To address these challenges, we built Persona, a
cluster-scale, high-throughput bioinformatics frame-
work. Persona currently supports paired-read alignment,
sorting, and duplicate marking using well-known algo-
rithms and techniques. Persona can significantly reduce
end-to-end processing times for bioinformatics compu-
tations. A new Aggregate Genomic Data (AGD) format
unifies sample data and analysis results, while enabling
efficient distributed computation and I/O.

In a case study on sequence alignment, Persona sus-
tains 1.353 gigabases aligned per second with 101 base
pair reads on a 32-node cluster and can align a full
genome in ∼16.7 seconds using the SNAP algorithm.
Our results demonstrate that: (1) alignment computa-
tion with Persona scales linearly across servers with no
measurable completion-time imbalance and negligible
framework overheads; (2) on a single server, sorting with
Persona and AGD is up to 2.3× faster than commonly
used tools, while duplicate marking is 3× faster; (3) with
AGD, a 7 node COTS network storage system can ser-
vice up to 60 alignment compute nodes; (4) server cost
dominates for a balanced system running Persona, while
long-term data storage dwarfs the cost of computation.

∗EPFL
†U. Politehnica of Bucharest (work done during EPFL internship)
‡Carnegie Mellon University (work done during EPFL internship)
§Stanford University

1 Introduction

In 2001, the approximate cost of sequencing a whole
human genome was $100 million. In 2017, the cost of
Whole Genome Sequencing (WGS) is rapidly approach-
ing $100 [25], a faster-than-Moore’s Law improvement.
Low-cost sequencing is a key enabler of personalized
medicine, which tailors treatments for patients to their
genetic makeup, promising better diagnoses and more ef-
fective therapies.

The genomic data produced by modern sequencing
machines, however, is unusable in its raw form. A large
amount of pre-processing must be done before analysis.
Depending on the sequencing parameters, raw data for
one human cell genome can range from several gigabytes
to hundreds of gigabytes. The data analysis and stor-
age problems are already challenging and will continue
to grow with the increasing ambition of doctors and re-
searchers to sequence more humans and other organisms.

WGS processing consists of a number of steps, includ-
ing read alignment (matching short snippets of genomic
data against a known reference), sorting, indexing, du-
plicate marking and variant calling (determining where a
patient has mutations/differences in their genome). For a
typical human genome, processing reads and writes tens
to hundreds of gigabytes of data and can require many
hours with current tools. Computational costs were mi-
nor when sequencing was rare and expensive. However,
as sequencing becomes an integral part of medical diag-
nosis and treatment, fast and efficient processing is in-
valuable for timely diagnosis and treatment.

Many existing tools run in parallel on a single mul-
ticore computer but are not designed to scale to server
clusters or cloud computing (though there are signifi-
cant efforts in this direction; see §7). A crucial chal-
lenge in scaling is that genomic data is stored in multiple
file formats, none of which are appropriate for parallel or
distributed computation. Sequencing machines produce
raw genomic data in one file format (FASTQ [8]) while
aligned data uses a different format (SAM/BAM [31]),

USENIX Association 2017 USENIX Annual Technical Conference 153

Data
Access

Decompress
Parse Process

Write
Results

Shared Data

Queuing

A B

Storage Subsystem

Server

Relative Index

Compressed
Data

Header

AGD Dataset

Figure 1: A.Persona architecture. Processing genomic
data across multiple servers using a distributed dataflow
framework. B.The Aggregate Genetic Data format stores
data in columns to facilitate distributed processing.

which results in data duplication. Downstream analy-
sis produces more files with different formats. In ad-
dition, common file formats are mainly row-oriented,
which precludes efficient field access and frustrates data
partitioning.

This state of affairs requires a new computing architec-
ture to deal with the coming deluge of genomic data. We
need a software architecture that runs effectively across
computers ranging from a single machine to a cluster, so
that genomic data processing can be performed in envi-
ronments ranging from doctors’ offices to hospitals and
regional “gene banks”.

To accomplish this, we require appropriate file formats
that enable: (1) scalable, parallel access from multiple
servers; (2) efficient use of both read and write band-
width; (3) flexibility, to support the multiple phases in
a genomics analytics pipeline; Additionally, scaling re-
quires the efficient use of compute resources in terms
of throughput and latency, which implies: (1) saturating
compute resources of a server at all times, which requires
data and task partitioning; (2) when possible, distribute
computation across multiple servers; (3) scheduling this
work, while avoiding stragglers [10]; (4) overlapping I/O
with compute to hide latency.

In this paper, we present Persona, a scalable, high-
performance framework for bioinformatics workloads,
and the Aggregate Genomic Data (AGD) format. Fig-
ure 1 shows Persona and AGD at a high level. The goal
of Persona and AGD is to provide a complete solution
for bioinformatics computations, including (but not lim-
ited to) read alignment, sorting, duplicate marking, fil-
tering, and variant calling. A secondary goal is exten-
sibility — both Persona and AGD are designed and im-
plemented in a way that allows straightforward integra-
tion of new capabilities (e.g., different alignment algo-
rithms or new data fields). Currently, Persona integrates

well-known algorithms from the bioinformatics commu-
nity, including those from BWA-MEM [30], SNAP [47],
Samblaster [14], and samtools [31], so users can be con-
fident in the results produced.

This paper makes the following contributions: (1)
To address the limitations of disparate monolithic row-
oriented files, the AGD format is a column-oriented file
structure designed for compute, storage and I/O band-
width efficiency, offering selective field and random ac-
cess, distributed computation support, and unified stor-
age of all genomic data for a given patient; (2) To
run efficiently across single computers and moderate-
sized clusters, we use distributed dataflow. Persona is
built on Google TensorFlow [1], a state-of-the-art dis-
tributed dataflow framework. TensorFlow’s coarse-grain
dataflow minimizes framework overheads, yet, when
augmented by a simple fine-grain mechanism, allows ef-
ficient use of all CPU resources in a cluster. We show
that decoupling I/O granularity from task granularity in
read alignment is necessary to maximize I/O bandwidth
and balance work on modern multicore architectures; (3)
We demonstrate linear scaling to the saturation point of
our testbed storage cluster. We perform WGS alignment
for a typical dataset in ∼16.7 seconds, a near order of
magnitude improvement over existing solutions; (4) We
demonstrate that the architecture is balanced from a total
cost of ownership perspective, with the cost dominated
by compute servers. Assuming full occupancy over 5
years, the cost of alignment is as little as 6.07¢. However,
the long-term overall costs are likely to be dominated by
storage.

Persona, AGD, and benchmarking scripts are freely
available [13].

The rest of this paper is organized as follows: §2 pro-
vides some background in relevant algorithms and file
formats. §3 describes the new AGD format and §4 de-
scribes the architecture of Persona. §5 evaluates our so-
lution on a 32-server compute cluster attached to a scale-
out storage subsystem. §6 provides some insight into
bioinformatics workloads, and analyzes the TCO for dif-
ferent cluster options. Finally, we discuss related work
in §7 and conclude in §8.

2 Background

The explosion of interest in and use of genomic data
has been made possible by Next-Generation Sequenc-
ing (NGS) [6]. NGS machines, through a biochemical
process called shotgun sequencing, read a genome by
chopping long DNA strands into small pieces and read-
ing these short snippets, which typically consist of 100
to 200 bases (A,T,C,G). The short snippets of a genome
are called reads and must be aligned — reassembled into
a full, coherent genome — before further analysis.

154 2017 USENIX Annual Technical Conference USENIX Association

2.1 Bioinformatics Computations

Since our case study focuses on alignment, we provide
some additional background.

To form a coherent genome, the reads in a raw dataset
must be aligned to a reference genome (about 3 billion
base pairs for a human). An aligner takes an individual
read and attempts to find the most likely match in the ref-
erence sequence. Insertions, deletions, and mismatches
between the bases are allowed, since genomes can have
small mutations and the sequencing machines regularly
misread base pairs. A read from a sequencing machine
consists of three data fields: the bases (A,C,T,G or N,
which is an ambiguous base), a quality score for each
base indicating the machine’s confidence, and metadata
uniquely identifying the read. Datasets typically ensure
that each base in the sample is overlapped by many reads
— this is called coverage and is typically 30 to 50×. Raw
datasets are typically single-ended, where each read is
independent, or paired-ended, where reads are aligned as
pairs with some gap between them. Reads are produced
in arbitrary order.

Common algorithms for performing alignment include
Smith-Waterman [43], an exact, dynamic programming
algorithm, and BLAST (Basic Local Alignment Search
Tool) [3], which uses seed-and-extend heuristics to lo-
cate short common words between sequences and extend
them to reach a threshold. These approaches are expen-
sive computationally, especially considering that modern
read datasets with 50× coverage can contain billions of
reads. Newer aligners, for example BWA-MEM [30],
Bowtie [29], NovoAlign [37] and SOAP [32], rely on
heuristics and algorithmic techniques such as tree-based
indexing of the reference to speed up alignment. Others,
such as SNAP [47], use hash-based indexing of the ref-
erence and are designed for multicore scalability. Align-
ment throughput is measured in bases aligned per sec-
ond, a read-length agnostic measure.

Other expensive operations follow alignment. Down-
stream processing usually requires datasets to be sorted
by read ID or aligned location in the genome. In addition,
some downstream steps are more efficient with random
access to the dataset. Sorting and indexing common data
formats (§2.2) is often very time-consuming.

Once data is aligned, sorted and indexed, further filter-
ing of data may take place. The preceding steps are usu-
ally followed by variant calling, another expensive pro-
cess that compares the reassembled genome to the refer-
ence and attempts identify mutations. Common variant
calling tools include GATK [34] and FreeBayes [16].

This is a sample of all the commonly used tools in
bioinformatics; readers are referred to [38] for a more
comprehensive survey.

manifest.json

test-0.bases

test-0.qual

test-0.metadata

test-0.results

...

File Header

Relative Index

Compressed
Data

Chunks 0

File on Disk

1
N{

 "name":"test",
 "records": [
 "path": "test-0",
 "path": "test-1",
 "path": "test-N"
],
 "columns": [
 "bases","qual",
 "metadata",
 "results"
]
}

Figure 2: A dataset in AGD format.

2.2 File Formats
The canonical format produced by sequencing machines
is FASTQ [8], an ASCII text format containing a delim-
ited list of reads. FASTQ delimits reads by the @ char-
acter, which makes parsing nontrivial as @ is also an en-
coded quality score value. FASTQ files are usually dis-
tributed in a compressed format to save disk space.

The de facto standard for read and aligned data is the
Sequence Alignment Map (SAM) format [31], or more
often its binary, compressed version BAM. Variant call-
ing results use the standard VCF format [9].

Typically, a dataset is stored in one
FASTQ/SAM/BAM file, so these files are very large (50
to 100+ GB). While FASTQ just holds raw read data
from a sequencer, SAM/BAM stores both the read and
alignment data. The files are row oriented, so accessing
a specific field requires reading all preceding entries, or
generating a separate index file.

3 Aggregate Genomic Data Format

The Aggregate Genomic Data (AGD) format is a new
extensible format for storing and manipulating genomic
data designed to support the high I/O demands of Per-
sona. AGD is designed for high-throughput read and
write performance and to easily partition genomic data
for parallel processing across one or more computers.
Persona provides efficient utilities to export/import AGD
to/from existing formats (SAM/BAM/FASTQ).

An AGD dataset is a table of records, each of which
contains one or more fields (i.e., a relational table). AGD
stores the data in an indexed, column-store format (Fig-
ure 2). Record fields are stored by columns, which in
turn are divided into large granularity chunks that reside
in disk files. A descriptive manifest metadata file holds
an index describing the columns, chunks, and records in
an AGD dataset, in addition to other relevant data such as
the names and sizes of contiguous reference sequences to
which the dataset reads have been aligned. The manifest
is implemented as a simple JSON file, which can be re-

USENIX Association 2017 USENIX Annual Technical Conference 155

constructed from the set of chunk files it describes. As an
illustrating example, Persona uses three columns to store
bases, quality scores, and metadata, and a fourth to store
alignment results.

Operations on a genome dataset do not always require
all elements in a record. For example, some duplicate
marking schemes only require results, not base pairs or
quality scores. In contrast to the row-oriented format of
both FASTQ and SAM, each AGD column can be read
independently and its data processed independently and
simultaneously.

Moreover, AGD is extensible. A new record field (one
or more columns) can be easily added by writing the col-
umn chunk files and adding appropriate entries to the
metadata file. For example, Persona appends alignment
results to a new AGD column. Any required parsing
functions for a new column may be added to Persona.
Columns can also be row-grouped, indicating that record
indices align in those columns.

AGD columns are split into chunks containing vary-
ing number of records, enabling optimization for differ-
ent storage subsystems. A chunk file contains a header,
index, and data block (Figure 2). AGD specifies the
record type in the chunk header, which informs applica-
tions how the data is stored (e.g., what type of parsing to
apply to each record). The index is relative, with offsets
to records being generated by summing preceding index
values. For more efficient random access, an absolute
index can be generated on the fly.

AGD applies two techniques to reduce the size of
the dataset: block compression of the data block and
base compaction. The type of compression may be se-
lected on a column-by-column basis. For example, a user
may compress the bases column with gzip while using
LZMA for the metadata. This flexibility allows tradeoffs
between compressed file size and decompression time,
which allow a user to balance the frequency of access
against the size of a column. Our implementation uses
gzip, as it has a good compression without being too
compute-intensive. An additional optimization of base
compaction is applied to the base reads column, which
stores base characters using 3 bits each, with 21 bases in
a 64-bit word.

The choice of chunk size is an important factor to max-
imize I/O performance. Larger chunk sizes have bet-
ter compression ratios and lower overhead due to large
contiguous reads from local storage. However, smaller
chunk sizes decrease the I/O and decompression latency
during which processing cores may stand idle.

4 System Architecture

We use a coarse-grain dataflow execution model for Per-
sona. The major functions of the system — I/O, com-
putation, and system management — are separated into

Disk rd
mmap

Process
Subgraph

AGD
Parsers

...

Shared Data
(e.g. Ref Index)

Filename
Queue

Network
Download

Network
Upload

Object
Pools

Disk
write

Ceph Dist.
Object Store

10GbE

Buffer

C

C

Recycleable
Buffer Pool

ACTGA

Genome Index

Seed Ref. Loc

2349523... ...

Reference Genome

...ACTGA...
3 Bn BasePair

Sink Node
Request Complete

Server 0

Server N

Writer Node(s)

Reader Node(s)

Input buffer
queue

Chunk object
queue

Output queue

Chunk
ObjectC

[Chunk file names]

Figure 3: Persona dataflow architecture.

dataflow kernels. Each kernel can be mapped to available
hardware resources (servers, cores, threads, or acceler-
ators). This computation model simplifies the design,
implementation, and deployment of the system, and al-
lows for simple integration of new processing steps. In
particular, the explicit flow between kernels simplifies
performance and bottleneck analysis and makes it easy
to adjust queuing for flow control and load balancing.
Dataflow semantics mean that independent tasks always
execute in parallel, both at the multicore and server lev-
els.

We use Google TensorFlow as our underlying dataflow
execution engine [1]. Although designed for machine
learning, the core of TensorFlow is a generic dataflow
engine. In TensorFlow, dataflow operators are called
nodes, which are assembled into computation graphs us-
ing a Python API. Underlying kernel implementations
of nodes are written in C++ and compiled alongside the
runtime framework.

We demonstrate that it is possible to use the Google
engine in a different context with minimal overhead
(1%). To achieve this low overhead, Persona: (1) Uses
a coarse-grain dataflow execution model between ker-
nels, while adding a fine-grain execution model within
compute-intensive kernels; (2) Uses pools of reusable
objects to buffer data and implement a zero-copy archi-

156 2017 USENIX Annual Technical Conference USENIX Association

tecture; (3) Controls memory usage by limiting the size
of object pools and the length of the queues between ker-
nels; (4) Balances the parallelism of I/O and alignment
to keep all CPU threads busy.

4.1 Persona Architecture

Persona consists of two layers: a set of TensorFlow
dataflow operators that read, parse, write, and operate on
AGD chunks, and a thin Python library that stitches these
nodes together into optimized subgraphs for common I/O
patterns and bioinformatics functions.

Figure 3 shows an instance of a Persona graph on a
single server. AGD chunk file names are consumed by
reader nodes that read data from disk or network sources.
AGD parsers decompress read chunks, enqueuing them
for the process subgraph. The process subgraph contains
the compute-intense operations — alignment, sorting,
duplicate marking, variant calling, etc. The writer nodes
store results from the process stage. Shared data objects
and pools provide recyclable buffers for AGD chunks
and results, and other shared objects such as the multi-
gigabyte reference indexes required for some aligners.

Individual dataflow nodes and queues can be stitched
together using the Python API however the user desires.
However, certain configuration patterns are more effi-
cient. The following subsections describe subgraphs that
Persona uses to achieve high performance.

4.2 I/O Input Subgraph

The input subgraph is designed to keep the process sub-
graph fed with data while incurring minimal overhead.
Reader nodes are implementations that read AGD chunks
from storage. Currently, Persona supports a local disk
or the Ceph object store [46] — other storage systems
can be supported simply by writing the interface into a
new Reader dataflow node. For disk files, Reader nodes
mmap AGD chunk files, producing a handle to a read-
only mapped file memory region. For network files,
Reader nodes request the chunk files from a storage sys-
tem (e.g., Ceph), putting each into a recyclable buffer ob-
tained from a buffer Pool. Once a chunk has been read, it
passes via a queue to an AGD Parser node, which decom-
presses and parses the chunk into a useable, in-memory
chunk object. Chunk objects are then passed to the pro-
cess subgraph via a central queue.

4.3 Process Subgraphs

Process subgraphs implement the bioinformatics opera-
tions on the AGD chunk objects. We describe the im-
plementation of several major functions and variants that
are currently implemented in Persona. In our experience,

Input
AGD Chunk

...

Output Buffer

Task/subchunk
Queue

Compute
Threads

Notify

Subchunk

Executor Object

Executor Resource

Process
Subgraph

Figure 4: To abstract and share threads in a coherent
way between parallel compute-intense kernels, a thread-
owning executor object is provided via a resource.

since the I/O and parallel execution are provided by Per-
sona, integrating existing tools is usually simple.

SNAP Alignment The Persona SNAP aligner node
uses the SNAP short read aligner [47], an open source
tool that is highly optimized for modern servers with
a large amount of memory and many cores. To at-
tain maximum performance, each core in the system
should be running the SNAP algorithm continuously on
AGD chunks, however we found the granularity of AGD
chunks, being optimized for storage, is too coarse for
threads and produces work imbalance that leads to strag-
glers. To remedy this, execution of the alignment algo-
rithm is delegated to an executor resource that owns all of
the threads, and implements a fine-grain task queue (Fig-
ure 4). Multiple parallel aligner nodes then feed chunks
to this executor, and wait for them to be completed. All
cores in the system are thus kept running continuously
doing meaningful work.

When executed, the aligner node receives chunk ob-
jects containing reads (base pairs and quality scores), a
handle to a buffer pool of output objects, and a handle
to the executor resource. The chunk object and output
buffer are logically divided into subchunks and placed in
the executor task queue as (subchunk, buffer) pairs. Once
a full chunk is completed, the originating aligner node is
notified, and the result buffer is placed in the subgraph
output queue.

BWA-MEM Alignment BWA-MEM [30] is another
popular read alignment tool that uses the Burrows-
Wheeler transform to efficiently find candidate align-
ment positions for reads. We integrate BWA-MEM in
the same manner as SNAP, using the executor resource
with a fine-grain task queue (Figure 4). We call BWA-
MEM alignment functions directly, with only several
lines of cosmetic code changes required. For single-read
alignment, this approach is straightforward, however for

USENIX Association 2017 USENIX Annual Technical Conference 157

paired reads, BWA-MEM incorporates a single-threaded
step over sets of reads to infer information about the
data. This leads to better alignment results, but separates
the computationally intense multithreaded step into two
parts. Therefore, the executor resource for BWA paired
alignment divides the system threads among these tasks.
We find a balance empirically, but because the computa-
tion times are data dependent, some efficiency is lost.

Sorting and Duplicate Marking Persona also inte-
grates full dataset sorting by various parameters, includ-
ing mapped read location and read ID. The sort imple-
mentation is a simple external merge sort, where sev-
eral chunks at a time are sorted and merged into tem-
porary file “superchunks”. A final merge stage merges
superchunks into the final sorted dataset. Persona sort is
several times faster than samtools sorting of SAM/BAM
files (§5).

Duplicate marking is a process of marking reads that
map to the exact same location on the reference genome.
This step is often performed since duplicate data can dis-
rupt downstream statistical methods. Persona duplicate
marking uses an efficient hashing technique based on the
approach used by Samblaster [14].

4.4 I/O Output Subgraph
The output subgraph mirrors the input subgraph, with
Writer nodes writing AGD chunks to disk or a Ceph ob-
ject store, with an optional compression stage. In gen-
eral, the process subgraph is responsible for ensuring
AGD chunks to write are properly formatted for a given
AGD column, as the Writer nodes are generic.

Persona also implements an output subgraph for the
common SAM/BAM format for compatibility with tools
that have not been integrated or do not yet support AGD.

4.5 Memory Management and Queuing
Proper memory management is necessary to efficiently
use the underlying server hardware. In particular, it
is important to avoid freeing, reallocating, and copying
memory and to avoid bringing in too much data, which
sits idle, or too little data, which stalls the pipeline.

We avoid using TensorFlow tensors directly for stor-
ing data, as they are not amenable to byte strings or raw
buffers. Instead, we pass tensors of handles, which are
identifiers for resources stored in the TensorFlow Ses-
sion. The resources in Persona are the pools and their
objects (buffers, chunk objects, shared read-only objects)
as shown in Figure 3. With this technique, Persona per-
forms no unnecessary copies.

Because computations in bioinformatics tend to be
compute- or memory-bound, the input subgraph gener-
ally runs ahead of the alignment subgraph, quickly fill-

ing the process subgraph input queue. Persona controls
memory pressure by limiting the queue length and there-
fore the number of objects passed around. The total
quantity of objects is the sum of the queue lengths and
the number of dataflow nodes that use an object. Overall
memory use in Persona is stable after the input queues
are filled. Because of the relatively coarse granularity of
AGD chunks, default queue lengths are set to the number
of parallel downstream nodes they feed, but can be tuned
lower for low-memory systems.

Queue capacity is kept at a level that ensures there is
always data to feed the process subgraph, but the individ-
ual servers do not have too many AGD chunks in their
pipelines, which can lead to stragglers. A server can be-
come a straggler if its queue contains “expensive” chunks
with high compute latency. Work stealing [5] is an alter-
native to avoid stragglers, but the approach of bounding
the queues is simpler and incurs less communication in a
distributed system.

4.6 Discussion

Using TensorFlow as a general dataflow engine was a
key design decision that had many benefits, but also led
to some challenges. Bioinformatics data is not particu-
larly amenable to storage in tensors. Initially, we had
stored strings of bases, qualities and metadata in string

type tensors, however this led to large amounts of small
memory allocations, and constant data copying since the
std::string type owns its data. This prompted the de-
cision to move to the recyclable buffer pooling strategy
outlined in the previous subsections. In an ideal world,
the dataflow engine and runtime of TensorFlow would
be separate from the Tensor data type and allow arbitrary
types.

The execution semantics of TensorFlow also caused
some issues when trying to maximize performance, es-
pecially in the multithreaded aligner kernels. Because
graphs are executed in steps, there is necessarily a delay
between one execution of a kernel and the next. There-
fore, parallelism must be used in the graph to ensure that
threads do not sit idle between executions. However, ad-
hoc sharing of threads between these multiple kernels via
the TensorFlow CPU device threadpool becomes diffi-
cult due to the way we need to split AGD chunks to re-
duce thread-level stragglers. The solution to this was the
method described in §4.3, where all threads executing a
given task are owned by a shared resource that can be fed
with work by multiple kernels.

Despite these difficulties, we were still pleased over-
all with TensorFlow. The framework provides numer-
ous features that greatly ease development and optimiza-
tion, such as node-level profiling, graph visualization,
and runtime statistics including current queue states or
any other variable one wishes to track. We were also

158 2017 USENIX Annual Technical Conference USENIX Association

pleasantly surprised at how seamlessly the implementa-
tion was able to overlap disk or network I/O with com-
putation. We also found that the dataflow semantics in
general enforce a fairly high degree of code separation
and modularity, which makes for seamless extension for
new support (e.g., different I/O subsystems).

5 Evaluation

5.1 Experimental Setup
We use a cluster of typical datacenter machines, each
with two Intel Xeon E5-2680v3 CPU chips at 2.5GHz
and 256 GBytes of DRAM. With 12 cores per socket nd
hyperthreading enabled, each node has 48 logical cores.
All machines run Ubuntu 16.04 Xenial Linux. Each ma-
chine includes 2 SSDs in RAID1 configuration for the
OS, 6 SATA disks (4TB, 7200 RPM, 6 GB/s), a hard-
ware RAID controller, and 10GbE network interface. For
single-node (local) experiments, we store the input data
on a 20 TB RAID0 disk array. For distributed (cluster)
experiments, we store the AGD dataset in a Ceph dis-
tributed object store [46] spread over 7 servers. The Ceph
cluster is configured to use 3-way replication and each of
its 7 nodes has 10 disks. The compute and storage are
connected by a 40GbE-based IP fabric consisting of 8
top-of-rack switches and 3 spine switches.

Persona accesses Ceph objects via the Rados API. Us-
ing the rados bench tool, we measure the peak Ceph
read throughput of our configuration at 6 GB/s, with se-
quential reads and evenly distributed data.

In all our experiments, we use half of a paired-end
whole genome dataset from Illumina [12] (ERR174324),
which consists of 223 million single-end 101-base reads,
and is 18 GB in gzipped-FASTQ format and 16 GB in
AGD format. The use of single-end read data is an arbi-
trary choice; Persona’s integrated aligners and AGD also
support paired-end alignment. The reference genome to
which we align the dataset is the common hg19 human
genome [23]. As mentioned in §2, alignment throughput
is measured in bases aligned per second.

5.2 Persona Configuration
All execution uses the TensorFlow direct session, un-
modified. For cluster-wide execution, Persona launches
a TensorFlow instance per compute server. Within each
server, the first stage in the TensorFlow graph fetches a
chunk name from the manifest server; the latter is im-
plemented as a simple message queue. Unless noted,
the AGD chunk size is 100,000, grouped into 2231
chunks. At this chunk size, both the bases and the quali-
ties are ∼3.5 MB. As our performance analysis focuses
mainly on alignment, we read only these two columns of
each chunk, totaling ∼7 MB per chunk.

SNAP AGD Single Node Speedup

Disk(Single) 817 sec 501 sec 1.63

Disk(RAID) 494 sec 499 sec 0.99

Network 760 sec 493.5 sec 1.54

Data Read 18GB 15GB 1.2

Data Written 67GB 4GB 16.75

Table 1: Dataset Alignment Time, Single Server

5.3 I/O Behavior of AGD

We first study the I/O behavior of Persona and AGD.
I/O behavior in Persona is fundamental, since we can
never assume a given patient’s genome data will already
be in memory (or that it even fits in memory). We per-
form alignment using different disk I/O configurations,
using the SNAP alignment subgraph and comparing to
the SNAP standalone program. We use SNAP instead of
BWA because it has higher throughput and is better able
to exercise the I/O subsystem. The single disk config-
uration stores the genome (and the results) on a single
local disk. The RAID0 configuration uses a hardware
RAID0 array of 6 disks to increase bandwidth. Both
SNAP and Persona are tuned for best performance, and
use 47 aligner threads.

Figure 5 provides a characterization of the CPU uti-
lization using a single disk and the full RAID0 config-
uration. Both systems overlap I/O and decompression
with alignment: SNAP uses an ad-hoc combination of
threads, whereas Persona leverages dataflow execution.
Figure 5a and Figure 5b show that Persona is CPU bound
in both configurations, but that SNAP can only use the
CPU resource fully in the RAID0 configuration.

In particular, Figure 5a shows a cyclical pattern with
SNAP where the operating system’s buffer cache write-
back policy competes with the application-driven data
reads; during periods of writeback, the application is un-
able to read input data fast enough and threads go idle.

Table 1 summarizes the difference in terms of the
amount of I/O traffic required as well as the impact on
execution time. While the column-orientation of AGD
has a marginal benefit in terms of data input, it has a
16.75× impact on data output, and a 1.63× speedup for
the single-disk configuration. When the storage subsys-
tem provides sufficient bandwidth, as for the RAID0 con-
figuration, the performance of SNAP and Persona are
nearly identical. Persona, however, does at least the same
amount of work with less hardware and eliminates the
disk I/O bottleneck.

The benefits of column-orientation of AGD are not
limited to local disks. Table 1 also shows the speedup of
1.54× when the data is stored on Ceph network-attached

USENIX Association 2017 USENIX Annual Technical Conference 159

(a) Single Disk CPU (b) RAID 0 CPU

Figure 5: Comparison of SNAP (GZIP’d FASTQ) and Persona (AGD) in CPU utilization with single disk and RAID0.

storage1.
Finally, Table 1 shows that, by overlapping I/O with

computation in meaningful-sized pieces, the perfor-
mance of Persona is nearly identical to SNAP and CPU
bound in three very different storage configurations.

5.4 Single-node CPU Alignment
We characterize the thread scaling behavior for Persona
in both the SNAP and BWA-MEM aligners, while com-
paring them to their standalone baselines, with single-
end alignment. These experiments show that Persona
imposes negligible core-scaling overhead on the subsys-
tems we have integrated, and avoids thread and I/O satu-
ration issues by efficient overlapping.

Figure 6 shows the scalability of standalone SNAP and
BWA-MEM compared to Persona as a function of the
number of provisioned aligner threads on the 48 core
server. The experiments were measured on the RAID0
configuration so that SNAP has enough I/O bandwidth.
For SNAP, Figure 6 shows clearly: (1) a near-linear
speedup for up to 24 threads, corresponding to the 24
physical processor cores of the server; (2) that, beyond
24 cores, the 2nd hyperthread increases the alignment
rate of a core by 32%. At 48 threads however, con-
tention with I/O scheduling causes a drop in performance
in SNAP. Persona is less sensitive to operating system
kernel thread scheduling decisions because of Tensor-
Flow’s built-in queue abstractions.

BWA scales fairly well to 24 threads, but afterwards
suffers from high memory contention after hyperthread-
ing kicks in, something we can not fix without signif-
icant changes to the codebase. However, because Per-
sona avoids setting up and tearing down threads for dif-

1SNAP does not natively support reading from Ceph, so we use the
rados utility to pipe the dataset in gzipped FASTQ format, and pipe
the resulting SAM file into Ceph.

ferent steps of processing, Persona’s BWA-MEM sub-
graph scales slightly better with more threads than the
standalone program.

5.5 Cluster Scalability

Figure 7 shows the throughput of two different systems
as a function of the number of nodes. “Actual” represents
the measured performance of Persona using the SNAP
alignment node, reported in gigabases aligned per sec-
ond for a single genome (i.e., a measurement of latency).
“Simulation” is the ideal speedup line based on the max-
imum local server performance of ∼45.45 megabases
aligned per second (see §5.4).

Persona scales linearly up to the available 32 nodes
by making efficient use of all compute resources, hid-
ing all I/O latencies and addressing the straggler prob-
lem through shallow queues. Again, we use SNAP be-
cause the higher throughput is better able to exercise the
I/O subsystems. When considering BWA-MEM, align-
ment throughput may be lower per node, but may scale
to higher numbers of servers. We reiterate that our point
is not to compare BWA-MEM to SNAP, but to show that
Persona is able to scale to a high number of servers while
keeping process subgraphs fully supplied with data.

Using 32 servers and the SNAP process subgraph, Per-
sona aligns the genome in 16.7 seconds, from the begin-
ning of the request to when all results are written back
to the Ceph cluster. This corresponds to 1.353 gigabases
aligned per second. As far as we are aware, this repre-
sents the fastest whole genome alignment to date.

We use a different methodology to test the scalabil-
ity of the storage cluster. For this, we deploy multiple
“virtual” TensorFlow sessions per server and replace the
CPU-intensive SNAP algorithm with a stub that simply
suspends execution for the mean time required to align
a chunk, and then output a representative (but obviously

160 2017 USENIX Annual Technical Conference USENIX Association

0 6 12 18 24 30 36 42 48
Number of Threads

0

10

20

30

40

50

60

70

Al
ign

m
en

t R
at

e (
 M

eg
ab

as
e /

 S
ec

on
d

)
SNAP
Persona SNAP
BWA
Persona BWA
SNAP Perfect
BWA Perfect

Figure 6: Throughput scaling across cores. Persona adds
no measurable overhead.

Tool Time Speedup

Persona 556 sec 1.0×

Samtools 856 sec 1.54×

Samtools w/ conversion 1289 sec 2.32×

Picard 2866 sec 5.15×

Table 2: Dataset Sort Time in Seconds, Single Server

incorrect) result.
Figure 7 shows the results in the “Simulation” line.

We first validate that the simulation matches the “Actual”
measurements up to 32 nodes. We then observe that the
Ceph cluster scales to ∼60 nodes without loss of effi-
ciency. Beyond 60 nodes, and for an AGD chunk size
of 100,000 reads, write performance of the alignment re-
sults limits performance.

5.6 Sorting and Duplicate Marking
We also compare Persona in sorting performance to Sam-
tools [31] and Picard [27], standard utilities for sorting
SAM/BAM files. Table 2 shows the results when con-
figuring Samtools to use all 48 cores available. Picard
does not have an option for multithreading. Samtools
requires sorting input in BAM format; we include both
sort and sort + conversion times. Persona can directly
process aligned results in AGD, performing up to 2.32
times faster than Samtools when considering the file con-
version time. Persona’s sort implementation is currently
naive, using std::sort() across chunks, and we be-
lieve these results can be improved substantially.

We compare Persona’s duplicate marking perfor-
mance to Samblaster [14], whose algorithm we have used
in our implementation. Samblaster can mark duplicates
at 364,963 reads per second, while Persona, which uses
Google’s optimized dense hashtable, can mark duplicates

0 20 40 60 80 100
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Gi
ga

ba
se

s A
lig

ne
d

/ S
ec

on
d

Actual
Simulation

Figure 7: Actual cluster throughput up to 32 servers us-
ing the Persona SNAP aligner. Simulated throughput
while scaling to 100 servers.

at 1.36 million reads per second. Note that Persona also
uses less I/O since only the results column needs to be
read/written from the AGD dataset.

5.7 Conversion and Compatibility
To support existing sequencer output formats and other
tools that have not yet been integrated, Persona can im-
port FASTQ and export BAM formats at high through-
put. FASTQ is imported to AGD at 360 MB/s, while
BAM format files are produced from AGD at 82 MB/s.

6 Discussion

Our performance analysis focuses on alignment, as it is
the most compute-intense step we have yet integrated
into Persona. As this is a primary bottleneck for anal-
ysis, we used Intel’s VTune Amplifier [41] to profile
both BWA-MEM and SNAP while running in Persona,
to identify any possible avenues for improvement. Fig-
ures 8a–8b summarize our findings, while comparing to
several relevant SPEC benchmarks.

Both aligner profiles share some similarity, in that
they are heavily CPU backend-bound (i.e., many cycles
stalled due to lack of resources for accepting µOps into
the pipeline, like D-cache misses or occupied functional
units). With SNAP, we see that the issue is due to the
core and not memory access — this is due to short but
frequent calls to a local alignment edit distance function
that has a small instruction mix and many data dependent
instructions and branches. In BWA-MEM, the system is
much more memory bound. VTune reports that this is
due mostly to cache misses and DTLB misses, and our
findings corroborate previous analyses [48]. This also
helps explain our improved thread scaling — by restrict-
ing primary functions to sets of cores, we reduce thread

USENIX Association 2017 USENIX Annual Technical Conference 161

(a) Analysis breakdown. (b) Core and memory
bound levels.

Figure 8: Workload analysis (with and without Hyper-
threading) compared to several SPEC benchmarks.

interference in the memory hierarchy.

6.1 TCO of Cluster Architectures
Personalized medicine has become practical because of
dramatic decreases in the cost of genome sequencing. In
light of these decreases, it is worth considering the cost
contributions of storage and computation. We consider
three cases: a single system attached to a single NGS
sequencer, our own balanced cluster, and a nation-wide
solution. We limit the analysis to alignment, the most
expensive computation we have yet integrated into Per-
sona.

First, Figure 5 shows the performance of single server,
where genomic data is stored, aligned, and processed on
a local machine. A single server can align ∼144 full se-
quences per day. Considering the total cost of ownership
(TCO) of the server over 5 years, this implies a cost of
4.1¢ per alignment, assuming full utilization. Note that
this scenario has limited genome storage capacity.

Second, there are economies of scale for sequencing,
and a more likely scenario would be a regional center
providing sequencing and processing services. A small
cluster and network storage subsystem, as we have used
in our experiments, could support 5173 alignments per
day. Figure 7 shows that our storage cluster can sustain
the I/O requests of a cluster of twice this size, offering
expansion capacity. Table 3 summarizes the cluster com-
pute and storage costs over a 5 year lifetime. For the
network fabric cost, we determine the per-port cost of
the 8-TOR, 3-spine architecture deployed in our phys-
ical cluster, and multiply by the number of ports used.
Table 3 shows that, assuming the system is fully loaded,
the TCO of a genome alignment on such a regional clus-
ter is 6.07¢, higher than above because of the larger stor-
age subsystem needed to support the throughput.

Item Unit cost Units Total

Compute Server $8,450 60 $507K

Storage server $7,575 7 $53K

Fabric ports $792 67 $53K

Total $613K

TCO(5yr) [21] $943K
Cost/Alignment (100% Utilization) 6.07¢

Table 3: Cluster TCO and alignment costs. The storage
cluster has 126 TB of usable capacity, corresponding to
approximately 6,000 sequenced genomes.

Third, a nation-wide solution would be needed to
support initiatives such as Genomics England’s 100,000
Genomes [17]. For this, additional storage is required
as our balanced cluster has a usable capacity of 126 TB,
which can store 6,000 in AGD format (1 days worth of
sequencing). One can use the 60:7 ratio of compute to
storage machines as a “not to exceed” scaling guide. The
TCO model of Table 3 can be adjusted to estimate the
capacity and throughput requirements of a deployment.

Storage is the dominant cost of a cluster and of
genome processing. With our current high-throughput
storage subsystem, the cost per genome for storage is
$8.83, two orders of magnitude higher than the align-
ment cost. Genomes that are not being actively processed
could be stored in tiered storage system using slower,
lower-cost storage and erasure coding [11]. Currently,
using Amazon Glacier storage ($0.007 GB/month [4]), a
full genome could be stored for 5 years for $6.72, only
slightly less expensive than locally hosted storage. Note
that with higher coverage datasets, storage amounts and
cost would increase.

Computation is far from the dominant contribution to
the cost of sequencing a genome. Storage, while more
expensive, is still far from a significant expense, but if
the cost of sequencing continues to decline at its faster-
than-Moore’s-Law rate, storage may become the limiting
factor in widespread genome sequencing. Novel com-
pression for genomic data, such as reference-based com-
pression [15], will likely be required.

7 Related Work

Because of its potential, bioinformatics and genomics
have been the topic of much research. Large orga-
nizations such as the Broad Institute have established
pipelines (Genome Analysis Toolkit [34]), a system sim-
ilar to Persona. GATK also employs sharding for par-
allel data access (i.e. HDFS), but uses the standard
SAM/BAM formats, often merging multiple input files
into single files, which can limit scalability. Recently,

162 2017 USENIX Annual Technical Conference USENIX Association

GATK has also been ported a cloud environment, Google
Genomics [26]. Microsoft also advertizes cloud-based
genomics capabilities [35]. However, these companies
have not released details of their internal systems archi-
tectures, so it is unclear how they compare.

In terms of file formats, the recent ADAM format [33]
is most similar to AGD. It also uses a column store for-
mat to achieve better compression. In addition, data is
serialized using a common framework (Avro) that sup-
ports multiple languages and is easily parsed. ADAM
relies on Spark and HDFS for distributed computation,
again restricting users to a single storage subsystem
type. In terms of performance, ADAM claims a ∼2×
speedup over Picard in single node sorting, whereas Per-
sona achieves a ∼5× speedup. HDF5 [44] is a general
purpose hierarchical file format that can also support a
bioinformatics schema similar to ADAM. In contrast to
AGD, it restricts users to MPI for multiprocessing and is
difficult to tune for high performance. TileDB [39] is a
system that stores multi-dimensional array data in fixed
size data tiles, similar to HDF5 but superior in write per-
formance and concurrency. TileDB “chunking” is sim-
ilar to AGD, but it employs a more rigid data model
and is generally much more complex. Parallel access is
implemented using MPI as in HDF5. Futhermore, Ge-
nomicsDB [22] is built on TileDB to store genomic vari-
ant data in 2D arrays, columns and rows correspond to
genome positions and samples, respectively.

AGD differs substantially from these formats in that it
is simple and requires only a way to store keyed chunks
of data. The AGD API to access chunk data can simply
be layered on top of different storage or file systems, us-
ing those system’s APIs for parallel access, distribution,
replication, etc.

Distributed alignment has been explored before, for
example CloudBurst [42], which uses Hadoop MapRe-
duce. They also find that the problem scales linearly
and that distribution can result in significant speedups.
CloudBurst reports 7 million reads aligned to one hu-
man chromosome in 500 seconds using 96 cores (5256
bases aligned per second per core), however a direct
performance comparison is difficult because the align-
ment algorithm is different, the read size is different (36
base pairs versus our 101), and the cluster architecture
and CPU were different. Cloud-Scale BWAMEM [7]
is a distributed aligner that can align a genome in
∼80 minutes over 25 servers, but requires different file
formats for single (SAM) or distributed computation
(ADAM). SparkBWA [2] is similar, scaling alignment
out over a Spark cluster, but not achieving linear scaling.
ParSRA [19] shows close to linear scaling using a PGAS
approach, but relies on FUSE to split input files among
nodes. Eoulsan [28] uses MapReduce to perform several
pipeline steps and supports different aligners. Pmap [24]
uses MPI to scale several different aligners across servers

and claims linear scaling.
Other efforts include SAND [36], where alignment

is divided into stages for reads, candidate selection and
alignment on dedicated clusters using algorithms sim-
ilar to BLAST. There have also been efforts to dis-
tribute BLAST computation itself [40]. Others have
shown that aligning reads to a reference genome scales
linearly [20]. merAligner [18] implements a seed-and-
extend algorithm that is highly parallel at all stages, but
uses fine-grained parallelism more amenable to super-
computing systems rather than the clusters or datacen-
ters that Persona targets. GENALICE Map [45] reports
92 million bases aligned per second on a single machine,
faster than even SNAP, however it is a closed-source pro-
prietary product.

In contrast to previous work, Persona and AGD pro-
vide a general high-performance framework that facili-
tates linear core and server scale out of not only align-
ment but many bioinformatics processes. Persona has
negligible overhead, and does not restrict users to spe-
cific storage systems or parallel patterns. The dataflow
architecture can support different models of parallelism,
while the Python API allows user composable pipelines.
AGD provides scalable, high-bandwidth access to data.
Both Persona and AGD are also extensible, making it
easy to integrate new or existing tools and data schemas.

8 Conclusion

In this paper, we demonstrate that existing state-of-the-
art bioinformatics tools can be embedded in a distributed
dataflow framework based on Google TensorFlow, yield-
ing a composable bioinformatics pipeline that scales lin-
early with near-zero overhead. In addition, we propose a
new data format for genomic data (AGD) that allows for
efficient data partitioning and distribution across clusters.

When using the SNAP algorithm, Persona aligns a
peak throughput of 1.353 gigabases per second on 32
servers. It can align a 223 million read dataset in
∼16.7 seconds. As far as we are aware, this represents
the fastest genomic sequence alignment system to date.

When scaled up, alignment can be very cost-efficient,
at only 6.07¢ per alignment, showing that bioinformatics
computing can be both fast and cost effective. Costs for
sequencing, at least in the near future, will be dominated
by the cost of consumables and data storage.

Persona and AGD are under active development, with
work ongoing to integrate comprehensive data filtering
and variant calling. The goal of Persona is to bring
the many disparate bioinformatics tools and algorithms
into a single, high-performance, yet easy-to-use system
that will meet the needs of both small-scale research and
large-scale personalized medicine. We look forward to
working with the systems and bioinformatics communi-
ties to achieve this end.

USENIX Association 2017 USENIX Annual Technical Conference 163

Acknowledgements

We thank the anonymous reviewers for their construc-
tive feedback and our shepherd, Fred Douglis for his sug-
gestions. This work was supported in part by the Nano-
Tera YINS project, Microsoft-EPFL Joint Research Cen-
ter, and a grant from VMware.

References

[1] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO,
E., CHEN, Z., CITRO, C., CORRADO, G. S., DAVIS,
A., DEAN, J., DEVIN, M., GHEMAWAT, S., GOODFEL-
LOW, I. J., HARP, A., IRVING, G., ISARD, M., JIA, Y.,
JZEFOWICZ, R., KAISER, L., KUDLUR, M., LEVEN-
BERG, J., MANÉ, D., MONGA, R., MOORE, S., MUR-
RAY, D. G., OLAH, C., SCHUSTER, M., SHLENS, J.,
STEINER, B., SUTSKEVER, I., TALWAR, K., TUCKER,
P. A., VANHOUCKE, V., VASUDEVAN, V., VIÉGAS,
F. B., VINYALS, O., WARDEN, P., WATTENBERG, M.,
WICKE, M., YU, Y., AND ZHENG, X. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. CoRR abs/1603.04467 (2016).

[2] ABUÍN, J. M., PICHEL, J. C., PENA, T. F., AND
AMIGO, J. Sparkbwa: speeding up the alignment of high-
throughput dna sequencing data. PloS one 11, 5 (2016),
e0155461.

[3] ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS,
E. W., AND LIPMAN, D. J. Basic local alignment search
tool. Journal of Molecular Biology 215, 3 (1990), 403 –
410.

[4] AMAZON, I. Amazon glacier pricing. https://aws.

amazon.com/glacier/pricing/. Accessed: 10-16-
2016.

[5] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling
Multithreaded Computations by Work Stealing. J. ACM
46, 5 (1999), 720–748.

[6] BROWN, S. M. Next-Generation DNA Sequencing Infor-
matics. Cold Spring Harbor Laboratory Press Cold Spring
Harbo, 2013.

[7] CHE, Y.-T., CONG, J., LEI, J., LI, S., PETO, M.,
SPELLMAN, P., WEI, P., AND ZHOU, P. CS-BWAMEM:
A Fast and Scalable Read Aligner at the Cloud Scale for
Whole Genome Sequencing (Poster). HiTSeq (2015).

[8] COCK, P. J., FIELDS, C. J., GOTO, N., HEUER, M. L.,
AND RICE, P. M. The sanger fastq file format for se-
quences with quality scores, and the solexa/illumina fastq
variants. Nucleic acids research 38, 6 (2010), 1767–1771.

[9] DANECEK, P., AUTON, A., ABECASIS, G., ALBERS,
C. A., BANKS, E., DEPRISTO, M. A., HANDSAKER,
R. E., LUNTER, G., MARTH, G. T., SHERRY, S. T.,
ET AL. The variant call format and vcftools. Bioinfor-
matics 27, 15 (2011), 2156–2158.

[10] DEAN, J., AND BARROSO, L. A. The tail at scale. Com-
mun. ACM 56, 2 (2013), 74–80.

[11] DIMAKIS, A. G., GODFREY, B., WU, Y., WAIN-
WRIGHT, M. J., AND RAMCHANDRAN, K. Network
coding for distributed storage systems. IEEE Trans. In-
formation Theory 56, 9 (2010), 4539–4551.

[12] EBERLE, M. A., FRITZILAS, E., KRUSCHE, P., KALL-
BERG, M., MOORE, B. L., BEKRITSKY, M. A., IQBAL,
Z., CHUANG, H.-Y., HUMPHRAY, S. J., HALPERN,
A. L., KRUGLYAK, S., MARGULIES, E. H., MCVEAN,
G., AND BENTLEY, D. R. A reference dataset of 5.4
million human variants validated by genetic inheritance
from sequencing a three-generation 17-member pedigree.
bioRxiv (2016).

[13] EPFL VSLC-DCSL. Persona - A High-Performance
Bioinformatics Framework. https://github.com/

epfl-vlsc/persona.

[14] FAUST, G. G., AND HALL, I. M. Samblaster: fast dupli-
cate marking and structural variant read extraction. Bioin-
formatics (2014), btu314.

[15] FRITZ, M. H.-Y., LEINONEN, R., COCHRANE, G.,
AND BIRNEY, E. Efficient storage of high throughput
dna sequencing data using reference-based compression.
Genome research 21, 5 (2011), 734–740.

[16] GARRISON, E., AND MARTH, G. Haplotype-based vari-
ant detection from short-read sequencing. arXiv preprint
arXiv:1207.3907 (2012).

[17] GENOMICS ENGLAND (NHS). The 100,000 Genome
Project. https://www.genomicsengland.co.uk,
2016.

[18] GEORGANAS, E., BULUÇ, A., CHAPMAN, J., OLIKER,
L., ROKHSAR, D., AND YELICK, K. A. merAligner: A
Fully Parallel Sequence Aligner. In Proceedings of the
29th IEEE International Symposium on Parallel and Dis-
tributed Processing (IPDPS) (2015), pp. 561–570.

[19] GONZLEZ-DOMNGUEZ, J., HUNDT, C., AND
SCHMIDT, B. parsra: A framework for the parallel
execution of short read aligners on compute clusters.
Journal of Computational Science (2017), –.

[20] GUO, S., AND PHAN, V. A distributed framework for
aligning short reads to genomes. BMC Bioinformatics 15,
S-10 (2014), P22.

[21] HAMILTON, J. Overall data center costs. Accessed: 08-
13-2016.

[22] HEALTH, I., AND SCIENCES, L. Genomicsdb. https:

//github.com/Intel-HLS/GenomicsDB/wiki. Ac-
cessed: 05-05-2017.

[23] HG19 Human Genome Download. http:

//hgdownload.cse.ucsc.edu/goldenPath/hg19/

bigZips/. Accessed: 06-20-2016.

[24] HPC LAB – OSU. Parallel Sequence Mapping
Tool. http://bmi.osu.edu/hpc/software/pmap/

pmap.html, 2016.

[25] ILLUMINA, INC. Illumina NovaSeq. https://www.

illumina.com/systems/sequencing-platforms/

novaseq.html, 2017.

164 2017 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/glacier/pricing/
https://aws.amazon.com/glacier/pricing/
https://github.com/epfl-vlsc/persona
https://github.com/epfl-vlsc/persona
https://www.genomicsengland.co.uk
https://github.com/Intel-HLS/GenomicsDB/wiki
https://github.com/Intel-HLS/GenomicsDB/wiki
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://bmi.osu.edu/hpc/software/pmap/pmap.html
http://bmi.osu.edu/hpc/software/pmap/pmap.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html

[26] INC., G. Broad institute gatk on google genomics.
https://cloud.google.com/genomics/gatk. Ac-
cessed: 08-13-2016.

[27] INSTITUTE, B. Picard. https://broadinstitute.

github.io/picard/. Accessed: 08-10-2016.

[28] JOURDREN, L., BERNARD, M., DILLIES, M.-A., AND
LE CROM, S. Eoulsan: a cloud computing-based frame-
work facilitating high throughput sequencing analyses.
Bioinformatics 28, 11 (2012), 1542.

[29] LANGMEAD, B., TRAPNELL, C., POP, M., AND
SALZBERG, S. L. Ultrafast and memory-efficient align-
ment of short dna sequences to the human genome.
Genome Biology 10, 3 (2009), 1–10.

[30] LI, H., AND DURBIN, R. Fast and accurate short read
alignment with Burrows-Wheeler transform. Bioinfor-
matics 25, 14 (2009), 1754–1760.

[31] LI, H., HANDSAKER, B., WYSOKER, A., FENNELL,
T., RUAN, J., HOMER, N., MARTH, G., ABECASIS, G.,
DURBIN, R., ET AL. The Sequence Alignment/map For-
mat and SAMtools. Bioinformatics 25, 16 (2009), 2078–
2079.

[32] LI, R., YU, C., LI, Y., LAM, T. W., YIU, S.-M., KRIS-
TIANSEN, K., AND WANG, J. SOAP2: an improved ul-
trafast tool for short read alignment. Bioinformatics 25,
15 (2009), 1966–1967.

[33] MASSIE, M., NOTHAFT, F., HARTL, C., KOZANITIS,
C., SCHUMACHER, A., JOSEPH, A. D., AND PATTER-
SON, D. A. Adam: Genomics formats and processing
patterns for cloud scale computing. University of Cali-
fornia, Berkeley Technical Report, No. UCB/EECS-2013
207 (2013).

[34] MCKENNA, A., HANNA, M., BANKS, E.,
SIVACHENKO, A., CIBULSKIS, K., KERNYTSKY,
A., GARIMELLA, K., ALTSHULER, D., GABRIEL, S.,
DALY, M., ET AL. The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Research 20, 9 (2010),
1297–1303.

[35] MICROSOFT. Microsoft genomics. https://

enterprise.microsoft.com/en-us/industries/

health/genomics/. Accessed: 08-13-2016.

[36] MORETTI, C., THRASHER, A., YU, L., OLSON, M.,
EMRICH, S. J., AND THAIN, D. A Framework for Scal-
able Genome Assembly on Clusters, Clouds, and Grids.
IEEE Trans. Parallel Distrib. Syst. 23, 12 (2012), 2189–
2197.

[37] NOVOCRAFT TECHNOLOGIES SDN BHD.
NovoAlign. http://www.novocraft.com/products/
novoalign/, 2016.

[38] PABINGER, S., DANDER, A., FISCHER, M., SNAJDER,
R., SPERK, M., EFREMOVA, M., KRABICHLER, B.,
SPEICHER, M. R., ZSCHOCKE, J., AND TRAJANOSKI,
Z. A survey of tools for variant analysis of next-
generation genome sequencing data. Briefings in Bioin-
formatics 15, 2 (2013), 256.

[39] PAPADOPOULOS, S., DATTA, K., MADDEN, S., AND
MATTSON, T. G. The TileDB Array Data Storage Man-
ager. PVLDB 10, 4 (2016), 349–360.

[40] PELLICER, S., CHEN, G., CHAN, K. C., AND PAN,
Y. Distributed sequence alignment applications for the
public computing architecture. IEEE transactions on
nanobioscience 7, 1 (2008), 35–43.

[41] REINDERS, J. VTune performance analyzer essentials.
Intel Press, 2005.

[42] SCHATZ, M. C. CloudBurst: highly sensitive read map-
ping with MapReduce. Bioinformatics 25, 11 (2009),
1363–1369.

[43] SMITH, T. F., AND WATERMAN, M. S. Identification of
common molecular subsequences. Journal of molecular
biology 147, 1 (1981), 195–197.

[44] THE HDF GROUP. Hierarchical data format version 5.
http://www.hdfgroup.org/HDF5, 2000-2010.

[45] TOLHUIS, B., LUNENBERG, J., AND KARTEN,
H. Ultra-fast, accurate and cost-effective ngs read
alignment with significant storage footprint reduction.
http://www.genalice.com/wp-content/uploads/

2013/07/GENALICE-poster-HiTSeq-2013.pdf.
Accessed: 08-13-2016.

[46] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,
D. D. E., AND MALTZAHN, C. Ceph: A Scalable, High-
Performance Distributed File System. In Proceedings of
the 7th Symposium on Operating System Design and Im-
plementation (OSDI) (2006), pp. 307–320.

[47] ZAHARIA, M., BOLOSKY, W. J., CURTIS, K., FOX, A.,
PATTERSON, D. A., SHENKER, S., STOICA, I., KARP,
R. M., AND SITTLER, T. Faster and More Accurate
Sequence Alignment with SNAP. CoRR abs/1111.5572
(2011).

[48] ZHANG, J., LIN, H., BALAJI, P., AND FENG, W. C.
Optimizing burrows-wheeler transform-based sequence
alignment on multicore architectures. In 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (2013), pp. 377–384.

USENIX Association 2017 USENIX Annual Technical Conference 165

https://cloud.google.com/genomics/gatk
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://enterprise.microsoft.com/en-us/industries/health/genomics/
https://enterprise.microsoft.com/en-us/industries/health/genomics/
https://enterprise.microsoft.com/en-us/industries/health/genomics/
http://www.novocraft.com/products/novoalign/
http://www.novocraft.com/products/novoalign/
http://www.hdfgroup.org/HDF5
http://www.genalice.com/wp-content/uploads/2013/07/GENALICE-poster-HiTSeq-2013.pdf
http://www.genalice.com/wp-content/uploads/2013/07/GENALICE-poster-HiTSeq-2013.pdf

